最优化

✍ dations ◷ 2024-12-22 20:10:17 #最优化
最优化,是应用数学的一个分支。主要研究在特定情况下最大化或最小化某一特定函数或变量。主要研究以下形式的问题:这类定式有时还称为“数学规划”(譬如,线性规划)。许多现实和理论问题都可以建模成这样的一般性框架。典型的, A {displaystyle A} 一般为欧几里得空间 R n {displaystyle mathbb {R} ^{n}} 中的子集,通常由一个 A {displaystyle A} 必须满足的约束等式或者不等式来规定。 A {displaystyle A} 的元素被称为是可行解。函数 f {displaystyle f} 被称为目标函数,或者代价函数。一个最小化(或者最大化)目标函数的可行解被称为最优解。一般情况下,会存在若干个局部的极小值或者极大值。局部极小值 x ∗ {displaystyle x^{*}} 定义为对于一些 δ > 0 {displaystyle delta >0} ,以及所有的 x {displaystyle x} 满足公式成立。这就是说,在 x ∗ {displaystyle mathbf {x} ^{*}} 周围的一些闭球上,所有的函数值都大于或者等于在该点的函数值。一般的,求局部极小值是容易的,但是要确保其为全局性的最小值,则需要一些附加性的条件,例如,该函数必须是凸函数。最优化问题通常有一些较特别的符号标示方法。例如:这是要求表达式 x 2 + 1 {displaystyle x^{2}+1} 的最小值,这里x取值为全体实数, R {displaystyle mathbb {R} } 。这个问题的最小值应该是 1 {displaystyle 1} ,当 x = 0 {displaystyle x=0} 。这是要求表达式 2 x {displaystyle 2x} 的最大值,同样地, x {displaystyle x} 在全体实数上取值。对于这个问题,由于该表达式不是有上界的,因此不存在最大值,因此,答案应该是无限大,或者是不可定义的。这是求使表达式x2+1 达到最小值时x的值。在这里x被限定在区间[-∞ ,-1]之间,所以上式的值是-1。对于无约束的优化问题, 如果函数是二次可微的话,可以通过找到目标函数梯度为0(也就是拐点)的那些点来解决此优化问题。我们需要用黑塞矩阵来确定此点的类型。如果黑塞矩阵是正定的话,该点是一个局部最小解, 如果是负定的话,该点是一个局部最大解,如果黑塞矩阵是不定的话,该点是某种鞍点。要找到那些拐点,我们可以通过猜测一个初始点,然后用比如以下的迭代的方法来找到。如果目标函数在我们所关心的区域中是凸函数的话,那么任何局部最小解也是全局最优解。现在已经有稳定,快速的数值计算方法来求二次可微地凸函数的最小值。有约束条件的约束问题常常可以通过拉格朗日乘数转化为非约束问题。其他一些流行的方法有:现代的计算机科学技术和人工智能科学把最优化作为一个重要的领域来研究。我们也可以认为人工智能的一些算法,就是模拟了人类寻求实际问题最优解的过程。例如,利用人工智能方法设计软件,配合外部的电子设备例如摄像头识别人脸;利用数据挖掘和神经网络算法来寻找投资的最佳时机等。

相关

  • 变形菌门变形菌门(Proteobacteria)是细菌中主要的一门,包括很多病原菌,如大肠杆菌、沙门氏菌、志贺氏菌、绿脓杆菌、霍乱弧菌、鼠疫杆菌、脑膜炎双球菌、淋球菌、空肠弯曲菌、幽门螺杆菌
  • 葡萄膜炎虹彩炎,是葡萄膜炎的一种,是一种虹膜以及睫状体的急性发炎的眼疾。发病原因至今不甚清楚,主要是自体免疫系统的问题,很有可能是自发性或反应性关节炎。临床症状上,常会有眼睛红、
  • Ta4f14 5d3 6s22, 8, 18, 32, 11, 2蒸气压第一:761 kJ·mol−1 第二:1500 kJ·mol体心立方四方主条目:钽的同位素钽(Tantalum,旧译作
  • 多系群多系群(英语:Polyphyletic group)在生物系统发生学中,是指一个分类群当中的成员,在演化树上分别位于相隔着其他分支的分支上;也就是说,该分类群并不包含其所有成员的最近共同祖先
  • 马哈拉施特拉马哈拉施特拉邦(马拉提语:महाराष्ट्र,印地语:महाराष्ट्र,拉丁字母转写:mahārāṣṭra),位于印度中部,西邻阿拉伯海,与印度卡纳塔克邦、特伦甘纳邦、果阿邦、古吉
  • CD62选择素(英语:selectins,又译为选择蛋白,或称为表面抗原分化簇-62,即CD62)是一个细胞粘附分子CAM家族,包括有E-选择素、L 选择素、P选择素等。所有的选择素都是单链跨膜糖蛋白,与C-型
  • 郭景坤郭景坤(1933年11月21日-),中国材料科学家。生于上海,籍贯广东新会。1958年毕业于复旦大学化学系。中国科学院上海硅酸盐研究所研究员,曾任该所所长、国家高性能陶瓷和超微结构国家
  • 全球城市人口排名本条目列出了“市域”概念定义下的世界上人口最多的城市。市域(city proper)是由法定或政治边界和定义的地方,是常以某种形式的地方政府为特征的行政上认可的城市。 市域及其边
  • 液压冲床液压冲床是应用液压缸产生压缩力的冲床,液压冲床是由英国的约瑟·布拉马(英语:Joseph Bramah)发明,在1795年发明了液压冲床,并且申请了专利。布拉马在研究当时有关流体运动的文献
  • 消耗内耗,意即“内部消耗”,是持续无意义争论下的产物。此词语源自台湾,多指媒体或政客借故炒作,歪曲事实以获取一己之利,消耗一个国家、一个群体社会资源的结果。