首页 >
初等代数
✍ dations ◷ 2025-04-02 16:41:58 #初等代数
初等代数是一个初等且相对简单形式的代数,教导对象为还没有数学算术方面正规知识的学生们。当在算术中只有数字和其运算(如:加、减、乘、除)出现时,在代数中也会使用符号(如:
x
{displaystyle x}
、
y
{displaystyle y}
或
a
{displaystyle a}
、
b
{displaystyle b}
)来表示数字,这些符号称做变量。这是很有用的,因为:这三个是基本代数的主要组成部分,以区隔其与目的为教导大学生更高深主题的抽象代数的不同。在初等代数里,表示式包含有数字、变量及运算。它们通常把较高次项(习惯上)写在表示左边(参考多项式),举几个例子来说:在更进阶的代数里,表示式也会包含有初等函数。一个等式表示其等号两边的表示式是相等的。某些等式对于其中变量的所有取值都成立(如
a
+
b
=
b
+
a
{displaystyle a+b=b+a}
);这种等式称为恒等式。而其他只有变量在某些值时才正确(如
x
2
−
1
=
4
{displaystyle x^{2}-1=4}
,此一使等式成立的变量值则称为这等式的解。最简单的方程为一元一次方程,它们是含有一个常数和一没有幂的变量。例如:其中心解法为在等式的两边同时以相同数字做加、减、乘、除,以使变量单独留在等式的一侧。一旦变量独立了,等式的另一边即是此变量的值。例如,将上面式子两边同时减去4:简化后即为再同时除以2:再简化后即为答案:一般的情形也可以依同样的方式得出答案来:【这就是一元一次方程简单的说明】一元二次方程可以表现成
a
x
2
+
b
x
+
c
=
0
,
{displaystyle ax^{2}+bx+c=0,}
在这
a
{displaystyle a}
不等于零(假如
a
{displaystyle a}
等于零,则此方式为一次方程而非二次方程)。二次方程必须保持二次的形态,如
a
x
2
{displaystyle ax^{2}}
,二次方程可以通过因式分解求解(多项式展开的逆过程),或者一般地使用二次方程公式。因式分解的举例:这相当于:0和-3是它的解,因为把
x
{displaystyle x}
置为0或-3便使上述等式成立。
所有二次方程在复数体系中都有两个解,但是在实数系统中却不一定,例如:没有实数解,因为没有实数的平方是-1。
有时一个二次方程会有2重根,例如:在这个方程中,-1是2重根。在线性方程组内,如两个变量的方程组内有两个方程的话,通常可以找出可同时满足两个方程的两个变量。下面为线性方程组的一个例子,有两个求解的方法:将第2个等式的左右项各乘以2,再将两式相加,上式可化简为因为已知
x
=
2
{displaystyle x=2}
,于是就可以由两式中的任意一个推断出
y
=
3
{displaystyle y=3}
。所以这个问题的完整解为注意:这并不是解这类特殊情况的唯一方法;
y
{displaystyle y}
也可以在
x
{displaystyle x}
之前求得。另一种求解的方法为替代。y
{displaystyle y}
的等值可以由两个方程中的其中一种推出。我们使用第二个方程:由方程的两边减去
2
x
{displaystyle 2x}
:再乘上 -1:将此
y
{displaystyle y}
值放入原方程组的第一个方程:在方程的两端加上 2:此可简化成将此值代回两个方程中的一个,可求得和上一个方法所求得的相同解答。注意:这并不是解这类特殊情况的唯一方法;在这个方法里也是一样的,
y
{displaystyle y}
也可以在
x
{displaystyle x}
之前求得。
相关
- 辣椒素辣椒素(英语:Capsaicin)又名辣素,辣椒碱,即反式-8-甲基-N-香草基-6-壬烯酰胺,分子结构式为(CH3)2CHCH=CH(CH2)4CONHCH2C6H3-4-(OH)-3-(OCH3,是辣椒属植物红辣椒的活性成分。它对包
- 动脉动脉(希腊语:αρτηρία)是指在生物体内、从心脏运送血液到全身各器官(包括心脏本身)的多条血管。除了肺循环的动脉以及脐动脉,动脉运送的是含氧量高的血液(因此也有称之为“动
- 气旋气旋是三维空间上的大尺度涡旋,其中心气压低、四周气压高,是一种近地面气流向内辐合,中心气流上升的天气系统。由于地球自转与科氏力(Coriolis effect)作用,使得气旋在北半球作逆
- 锰4s2 3d52, 8, 13, 2蒸气压第一:717.3 kJ·mol−1 第二:1509.0 kJ·mol−1 第三:3248 kJ·mol−1 (主条目:锰的同位素锰是原子序为25的化学元素,其元素符号为Mn。锰不会以元素
- 下颌颔(又称下巴、下颔、下巴颏),是位于脊椎动物包括人类面部嘴唇以下的部位,人到年老时下巴会逐渐萎缩,这是老化现象的一个过程。
- 水蚤水蚤(属名:Daphnia),又称“鱼虫”,是一种生活在水中的浮游生物,体长介于0.2毫米至5毫米之间。时常用于鱼食之用途。其属于蜉蝣目。可存在于多种环境中,包括沼泽、池塘、湖泊以及河
- 土木土木工程(civil engineering),在中国大陆原先翻译为“公民建”(公用与民用建筑),是指一切和土、木有关的基础建设的计划、建造和维修。现时一般的土木工作项目包括:能源、水利及交
- 培养箱培养箱(英语:incubators)是一种用于微生物、细菌、细胞培养的医学及生物实验室设备,由一个类似恒温箱组成,形成一个微生物、细菌、细胞培养的环境。培养箱分为较多种类。利用培养
- 意大利行政区划意大利政区根据1948年宪法规定获得了一定程度的地区自治权,这条宪法条文是:为承认、保护并促进地方自治,保证在国家水平的服务尽可能分散管理,以适应自治和分权法律和法规的建立
- 马木留克时期马穆鲁克苏丹国(1250年-1517年)是一个于十三世纪中至十六世纪初统治埃及、巴勒斯坦和叙利亚地区的国家,又称马穆鲁克王朝。马穆鲁克王朝的历史可分为前后二期:前期为伯海里王朝,是