余弦定理

✍ dations ◷ 2025-11-26 06:50:25 #三角学,几何定理,角,三角形几何

余弦定理是三角形中三边长度与一个角的余弦值( cos {\displaystyle \cos } )的数学式,参考右图,余弦定理指的是:

同样,也可以将其改为:

其中 c {\displaystyle c} γ {\displaystyle \gamma } 角的对边,而 a {\displaystyle a} b {\displaystyle b} γ {\displaystyle \gamma } 角的邻边。

勾股定理则是余弦定理的特殊情况,当 γ {\displaystyle \gamma } 90 {\displaystyle 90^{\circ }} 时, cos γ = 0 {\displaystyle \cos \gamma =0} ,等式可被简化为

当知道三角形的两边和一角时,余弦定理可被用来计算第三边的长,或是当知道三边的长度时,可用来求出任何一个角。

余弦定理的历史可追溯至公元三世纪前欧几里得的几何原本,在书中将三角形分为钝角和锐角来解释,这同时对应现代数学中余弦值的正负。根据几何原本第二卷的命题12和13,并参考右图,以现代的数学式表示即为:

其中 C H ¯ = B C ¯ cos ( π γ ) = B C ¯ cos γ {\displaystyle {\overline {CH}}={\overline {BC}}\cos(\pi -\gamma )=-{\overline {BC}}\cos \gamma } ,将其带入上式得到:

见右图,在 c {\displaystyle c} 上做高可以得到(投影定理):

将等式同乘以c得到:

运用同样的方式可以得到:

将两式相加:

A B C {\displaystyle \triangle ABC} 中, A B ¯ = c {\displaystyle {\overline {AB}}=c} B C ¯ = a {\displaystyle {\overline {BC}}=a} A C ¯ = b {\displaystyle {\overline {AC}}=b} 。过 B {\displaystyle B} 点作 A C {\displaystyle AC} 的垂线,垂足为 D {\displaystyle D} ,如果 D {\displaystyle D} A C {\displaystyle AC} 内部,则 B D {\displaystyle BD} 的长度为 a sin C {\displaystyle a\sin C} D C {\displaystyle DC} 的长度为 a cos C {\displaystyle a\cos C} A D {\displaystyle AD} 的长度为 b a cos C {\displaystyle b-a\cos C} 。根据勾股定理:

如果 D {\displaystyle D} A C {\displaystyle AC} 的延长线上,证明是类似的。同理可以得到其他的等式。

A B C {\displaystyle \triangle ABC} 中, A B ¯ = c {\displaystyle {\overline {AB}}=c} B C ¯ = a {\displaystyle {\overline {BC}}=a} A C ¯ = b {\displaystyle {\overline {AC}}=b} 。过 B {\displaystyle B} 点作 A C ¯ {\displaystyle {\overline {AC}}} 的垂线,垂足为 D {\displaystyle D} ,设 A D ¯ = x {\displaystyle {\overline {AD}}=x} ,则 C D ¯ = b x {\displaystyle {\overline {CD}}=b-x} ,根据勾股定理:

如果 D {\displaystyle D} A C ¯ {\displaystyle {\overline {AC}}} 的延长线上,证明是类似的。同理可以得到其他的等式。

余弦定理是解三角形中的一个重要定理。

余弦定理可以简单地变形成:

因此,如果知道了三角形的两边及其夹角,可由余弦定理得出已知角的对边。

余弦定理可以简单地变形成:

因为余弦函数在 ( 0 , π ) {\displaystyle ({{\rm {0}},\pi })} 上的单调性,可以得到:

因此,如果已知三角形的三边,可以由余弦定理得到三角形的三个内角。

正弦 · 余弦 · 正切 · 余切 · 正割 · 余割

反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割

正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数

正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理

三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 阿比西尼亚阿比西尼亚可以指:
  • 生物性别生物性别(英语:sex)又称生殖性别或生理性别、生物中有许多物种可以划分成雄性及雌性,不过也有些会是间性。有性生殖是指雄性和雌性生物将其基因特质混合重组,繁衍后代的过程。配
  • 韩瑟勒巴通氏菌汉氏巴尔通体(Bartonella henselae)是一种常见的、可导致猫抓病的真细菌,属于巴尔通体属。该细菌通过三聚体自身转运蛋白粘附素(英语:trimeric autotransporter adhesin)与宿主细
  • 犬冠状病毒犬冠状病毒(Canine coronavirus、CCoV)是甲型冠状病毒属的一种病毒,与猫冠状病毒同属甲型冠状病毒一型(Alphacoronavirus 1),可在犬类中引起高度传染性的肠道疾病,广泛分布于世界各
  • Stars and Stripes《星条旗报》(英语:Stars and Stripes)是美国军方的一份报纸,由美国国防部所办。《星条旗报》创刊于1861年11月9日。当时美国处于南北战争中,一队联邦军士兵在占领了一家报馆之后
  • 姻亲指基于婚姻关系而生之亲属型态,一方配偶与他方配偶之亲属间,因双方缔结婚姻后,成为相互具法律上亲属关系的情况。《中华民国民法》第969条规定,包括配偶的血亲、血亲的配偶
  • 镜像宇宙镜像宇宙,又称黑暗镜像,是出现在《星际旅行》剧集中的虚构的平行宇宙。这一宇宙类似《星际旅行》中其他独立于主宇宙的其他虚构的平行宇宙。镜像宇宙中的角色在性格上相较主宇
  • 高拱明人绘《高拱赐服像》 现藏于北京故宫博物院高拱(1513年1月19日-1578年8月4日),字肃卿,号中玄,河南新郑人,祖籍腹里洪洞,明朝政治人物,官至吏部尚书、中极殿大学士,为内阁首辅。先世避
  • 鸟取县知事列表鸟取县知事列表包括鸟取县的历届知事(官派:36届36人/民选:17届7人)。
  • 塔拉勒·伊本·阿卜杜拉塔拉勒·伊本·阿卜杜拉(1909年2月16日-1972年7月7日),约旦国王,在位时间为1951年-1952年。 1952年8月11日,他因健康问题(精神分裂症)而退位于长子侯赛因。1934年,塔拉勒娶了他的表亲