洛希瓣

✍ dations ◷ 2025-04-26 12:45:23 #联星,天体力学

洛希瓣是包围在恒星周围的空间,在这个范围内的物质会受到该天体的引力约束而在轨道上环绕着。如果恒星膨胀至洛希瓣的范围之外,这些物质将会摆脱掉恒星引力的束缚。如果这颗恒星是联星系统,则这些物质会经由内拉格朗日点落入伴星的范围内。等位面的临界引力边界形状类似泪滴形,泪滴形的尖端指向另一颗伴星(尖端位于系统的L1拉格朗日点)。它不同于洛希极限,后者是仅由引力维系在一起的物质受到潮汐力作用开始崩解的距离;它也与洛希球不同,那是在一个天体周围的空间,在受到另一个它所环绕的更巨大天体的摄动时,仍能维持小天体的轨道稳定,接近球形的引力球。洛希瓣、洛希极限和洛希球都是以法国天文学家爱德华·洛希的名字命名的。

在有着圆轨道的联星系统中,它通常能在随着天体一起转动的坐标系统中很有效的描述。除了重力之外还必须考虑离心惯性力。可以用势能一起描述这两种力,例如,恒星的表面可以沿着等位面表面伸展。

在靠近个别的恒星时,相同的重力等位面形状是接近球形的,并且与靠近的恒星是同心球。在离恒星系统较远处,等位面的形状接近椭球体,并且延伸的方向平行于两颗恒星的联心轴线的方向。临界的等位面和系统本身的L1拉格朗日点相交会,各自在瓣图中形成在两颗恒星之间的8字形瓣图。这个临界的等位面定义出洛希瓣。

当相对于共同转动系统中的物质流动时,似乎会采取像科氏力的行为。这不是从洛希瓣的模型推导出来的,科氏力是不守恒力(也就是说,不能以标量来处理)。

当一颗恒星"超越了洛希瓣",它的表面扩展至洛希瓣之外,同时超越过洛希瓣的物质会经由L1拉格朗日点至伴星的洛希瓣之内。在联星演化的过程中,这种质量传输被称为。

原则上,质量传输可能导致天体完全的解体,因为质量的减少会导致洛希瓣的萎缩。但是,有几个原因使这种情况通常不至于发生。首先,捐助恒星的质量减缩会导致捐助者的缩小,这可能会阻碍后续的捐助。其次,在联星的两颗恒星之间的质量传输还包括了角动量的传输。当物质从质量较大的恒星捐助给原本质量较小的恒星增生时,通常会导致轨道的收缩,反过来造成联星轨道的膨胀(根据质量守恒和角动量守恒的设想)。联星轨道的扩大将导致较少的戏剧性收缩,或甚至会扩大捐助者的洛希瓣,而这通常会阻止捐助者受到破坏。

要测量质量传输的稳定性和捐助者确实的萎缩,需要实际计算捐助恒星的半径和之后的洛希瓣质量传输;如果恒星扩张的比洛希瓣的缩小还快,或是缩小的比洛希瓣拖拉的时间还慢,质量的传输会变得不稳定而导致捐助恒星瓦解的可能。如果捐助恒星扩张的较慢,或是收缩得比洛希瓣快,质量的传输通常会保持稳定并且可以持续很长的时间。

由于洛希瓣溢流的质量传输是易懂的几种天文现象之一,包括大陵五系统,再发新星(包含一颗红巨星和一颗白矮星的联星,并且相距的距离足以使红巨星的物质逐渐流动至白矮星)、X射线联星和毫秒脉冲星。

洛希瓣的精确形状取决于质量比,并且必须经过数值的计算。但是,在多数的用途中,都使用形状近似和有着相同体积的洛希瓣。一个有着球形和半径的近似计算公式如下:

r 1 A = 0.38 + 0.2 log M 1 M 2 {\displaystyle {\frac {r_{1}}{A}}=0.38+0.2\log {\frac {M_{1}}{M_{2}}}} for 0.3 < M 1 M 2 < 20 {\displaystyle 0.3<{\frac {M_{1}}{M_{2}}}<20}

并且

r 1 A = 0.46224 ( M 1 M 1 + M 2 ) 1 / 3 {\displaystyle {\frac {r_{1}}{A}}=0.46224\left({\frac {M_{1}}{M_{1}+M_{2}}}\right)^{1/3}} 对于 M 1 M 2 < 0.8 {\displaystyle {\frac {M_{1}}{M_{2}}}<0.8}

此处,A是系统的半长轴, r 1 {\displaystyle r_{1}} 是环绕着质量为 M 1 {\displaystyle M_{1}} 的洛希瓣的半径。这些公式大约可以精确到2%以内。

相关

  • 尿道尿道(拉丁语学名:Urethra)是动物体内泌尿系统的器官之一。它从膀胱连通到体外,它的作用是将尿排出体外。在雄性哺乳动物中它还有将精液导出的作用,因此也是生殖器官之一。在胚胎
  • 北京市疾病预防控制中心北京市疾病预防控制中心、北京市预防医学研究中心位于北京市东城区和平里中街16号,是中国北京市的一家市级卫生事业单位,成立于2000年。北京市疾病预防控制中心、北京市预防医
  • 未解决的化学问题未解决的化学问题往往指以下这些类型的问题:“我们能制备某种化合物吗?”、“我们能分析它吗?”、“我们能提纯它吗?”等等。这些问题通常都能很快解决,但可能需要付出相当大的努
  • 约翰·巴科斯约翰·华纳·巴科斯(英语:John Warner Backus,1924年12月3日-2007年3月17日),美国计算机科学家,是早期高阶语言(High-level Language)FORTRAN的发明小组组长。他提出了BNF(用来定义形
  • 未接触部落未接触部落、遗世部落(uncontacted peoples;isolated people;lost tribes;voluntary isolation),是指未与现代文明接触的原始部落,世界各地只有少数群体仍然孤立。他们大多数生活在
  • 新里斯本坐标:12°46′S 15°44′E / 12.767°S 15.733°E / -12.767; 15.733万博(葡萄牙语:Huambo)位于安哥拉中部本格拉铁路沿线,旧称新里斯本(葡萄牙语:Nova Lisboa),是万博省的首府。万博
  • 代位父母代位父母(拉丁语:in loco parentis),指某人或某组织在法律上承担父母职能与责任的情况。该术语起源于英国的英美法系,当中将组织与个人的代位父母情况做区隔。首先,代位父母允许大
  • 瓶梗瓶梗(/ˈfaɪəlaɪd/;FY-ə-lyde;希腊语:phialis,英语:phialide)最早由Hanlin(1976)研究棒曲霉(学名:Aspergillus clavatus)时所发现。是高等真菌无性生殖的构造。为一种真菌分生孢子
  • 曼德勒海湾曼德勒海湾赌场度假村(英语:Mandalay Bay Resort and Casino)是位于美国内华达州拉斯维加斯大道上的一所赌场酒店,酒店由美高梅国际酒店集团所持有及管理。另外,酒店主大楼的第34
  • 台铁乘务员台铁机班指的是于台湾铁路管理局驾驶动力车的列车司机。就职称来说,实际于台铁担任动力车乘务员包含机车长、司机员、机车助理等约1,200人。连同整备员、学习司机员、未实际