NP (复杂度)

✍ dations ◷ 2025-07-21 15:22:46 #复杂度类,计算机科学中未解决的问题

非决定性多项式集合(英语:non-deterministic polynomial,缩写:NP)是计算理论中最重要的集合之一。它包含P和NP-complete。P集合的问题即在多项式时间内可以找出解的决策性问题(decision problem)集合。注意NP包含P和NP-complete问题, 因此NP集合中有简单的问题和不容易快速得到解的难题。是一个计算机科学中知名的难题。

决策问题:一个决策问题(decision problem)是指其输出,只有“是”或“否”的问题。例如,搜索问题为询问 x 是否出现在一个集合 A 中?若有则输出“是”,否则输出“否”。
P集合: 当一个决策问题存在一个O(nk)时间复杂度的算法时,则称此问题落在P 的集合中。

有一些决策问题,人类目前尚无法将他们归入集合 P 中。为了思考这些问题,于是在一般算法可采用的功能上,扩增以下虚构的新指令。这些新指令虽然不存在于现实中,但是对探讨这些难题的性质及彼此的关系,有很大的帮助。以下是这些虚构的新指令:

1. choice(S):自集合 S 中,选出会导致正确解的一个元素。当集合 S 中无此元素时,则可任意选择一个元素。

2. failure():代表失败结束。

3. success():代表成功结束。
其中 choice(S)可以解释成,在求解的过程中,神奇地猜中集合 S 中其中一个元素,使其结果是成功的;并且这三个指令只需要 O(1)时间来运行。当然,choice(S) 是如何快速猜中的,在此是不需讨论的,因为毕竟它只是虚构的。在添加这些虚构功能后,所设计出的算法,被称为非决定性算法(non-deterministic algorithm);相较之下,原来一般的算法,就称为决定性算法(deterministic algorithm)。利用非决定性算法,我们定义出另一个集合 NP:

NP: 当一个决策问题存在一个O(nk)时间复杂度的算法时,则称此问题落在NP 的集合中。

满足问题 (satisfiability problem,简称 SAT),就是一个NP中的典型难题。

满足问题:令 x 1,x 2,…,x n 代表布尔变量(boolean variables)(其值非真(true)即假(false)的变量)。令-xi 代表 xi 的相反数(negation)。一个布尔公式是将一些布尔变量及其相反数利用而且(and)和或(or)所组成的表达式。满足问题是判断是否存在一种指定每个布尔变量真假值的方式,使得一个布尔公式为真。

输入:一个 n 个变量的布尔公式

例如: (-x 1∨ -x 2 ∨ x 3)∧ (x 1 ∨ x 4)∧(x 2 ∨ -x 1)

输出:是否存在一种指定每个布尔变量真假值的方式,使得此公式为真?例如: 是(当 x 1=真,x 2=真,x 3=真,x 4=真时,此公式为真)

利用满足问题可以定义出NP-hard和NP-complete。但是我们需要一个问题转换的概念。问题转换技巧,其所需要转换的时间皆需在多项式时间(即 O (nk))内完成。利用此多项式时间的转换,我们可以将 NP中的难题创建起一些有趣的关系。

问题转换:针对两个问题 A 和 B ,如果存在一个 O (nk)时间的(决定性)算法,将每一个问题 A 的输入转换成问题 B 的输入,使得问题 A 有解时,若且惟若,问题 B 有解。此关系被称为,问题 A 转换成(reduce to)问题 B ,可表示成 A ∝ B 。

一个问题 L 被称为是 NP-hard,若且惟若,满足问题转换成 L(即满足问题∝L)。满足问题是 NP 中的难题,而 NP-hard 的问题则是满足问题派生(转换)出来的。

一个问题 L 被称为是 NP-complete,若且惟若,L ∈NP 而且 L ∈NP-hard。

史蒂芬库克(Stephen Cook)证明了一个十分重要的性质:

性质(A):“任一个 NP 内的问题都可以,在多项式时间内,被转换成满足问题。”

性质(B):“任一个 NP 内的问题都可以,在多项式时间内,被转换成任一个 NP-complete 问题。”

性质(C):“任一个 NP 内的问题都可以,在多项式时间内,被转换成任一个 NP-hard 问题。”

性质(D):“满足问题在集合 P 中,当且仅当,P=NP。”

比如说,一个决策性问题:输入一个整数x, 请回答x是否为偶数(even number)。我们利用一个程序判断x除以2是否整除即可得到最后结果 。此程序是决定性算法, 并且其时间复杂度为O(1)=O(n0), 因此此问题落入P集合中。

再举一个例子,下面是满足问题的一个非决定性算法。

Algorithm satisfiability (E (x 1, … , xn ))

{Step 1: for i =1 to n do

xi ←choice (true, false) /*利用 choice 直接猜中 xi 的真假值*/

Step 2: if E (x 1, … , x n) is true then success () /*计算此布尔公式是否为真*/

    else failure ();
}


上述的非决定性算法的时间复杂度为O(n1)即代表满足问题落入NP集合中。

相关

  • 免疫疗法免疫治疗(英语:Immunotherapy),是指通过诱导、增强或抑制免疫反应的疾病治疗方法。其中旨在引起或增强免疫反应的免疫疗法,称为激活免疫疗法(activation immunotherapies),而减少或
  • 扁桃体扁桃腺,又称扁桃体,是人和两栖类以上动物,鼻后孔的顶壁或咽与口腔、鼻腔交界处粘膜下淋巴组织所集成的团块的通称,因为外形像扁桃一样而得名。一般所说的扁桃腺是指肉眼可见的颚
  • 纯素食主义者素食主义(英语:vegetarianism),又称蔬食主义,素食,蔬食(英语:plant-based food)等,是一种有关饮食的文化,主张不食用飞禽、走兽、鱼虾等动物的身体,也就是肉类,实践这种饮食文化的人被称
  • 摩尔日摩尔日是一个流传于北美化学家、化学系学生及化学爱好者中的非正式节日,通常他们在10月23日的上午6:02到下午6:02之间庆祝它。在美式写法中,这两个时刻被记为6:02 10/23,外观与
  • 秀兰·邓波儿秀兰·简·邓波儿或译为雪莉·谭宝(英语:Shirley Jane Temple,1928年4月23日-2014年2月10日),生于美国加州,享誉全球的美国传奇童星及外交官,全世界第一位获得奥斯卡奖的童星,肯尼迪
  • 中国和平出版社中国和平出版社是中华人民共和国的一家出版社,成立于1985年,社址位于北京市,由中国宋庆龄基金会主管,中国宋庆龄基金会和江西省出版集团公司主办。
  • Elisa (公司)Elisa公司(芬兰语:Elisa Oyj)是芬兰一家电信公司,成立于1882年。原称赫尔辛基电话(Helsingin Puhelin,至2000年7月)及Elisa通信公司(Elisa Communication Oyj,至2003年)。Elisa 经营电
  • 严宽 (嘉靖进士)严宽(1493年-?年),字栗夫,号玉山,南直隶镇江府丹徒县人,明朝政治人物。嘉靖十一年(1532年)壬辰科第三甲第一百零九名进士。观工部政,升刑部主事,郎中。嘉靖二十四年(1545年)任浙江杭州府知
  • ANU (组合)ANU是中国大陆的一对流行歌曲男子组合,成立于2016年,由巴雅、宫巴两位来自青海囊谦的藏族男歌手组成。 “ANU”实际发音为“A'Nu(阿怒)”,是由藏语音译而来,其在藏语的意思是“少
  • 黄杨科黄杨科只有4-5个属,共约90-120种,一般都是小型树或灌木,广泛分布在全世界各地,第五个属()根据基因测定,和黄杨属合并(Balthazar et al., 2000)。黄杨科被许多分类学家承认为一个