NP (复杂度)

✍ dations ◷ 2025-12-09 10:13:14 #复杂度类,计算机科学中未解决的问题

非决定性多项式集合(英语:non-deterministic polynomial,缩写:NP)是计算理论中最重要的集合之一。它包含P和NP-complete。P集合的问题即在多项式时间内可以找出解的决策性问题(decision problem)集合。注意NP包含P和NP-complete问题, 因此NP集合中有简单的问题和不容易快速得到解的难题。是一个计算机科学中知名的难题。

决策问题:一个决策问题(decision problem)是指其输出,只有“是”或“否”的问题。例如,搜索问题为询问 x 是否出现在一个集合 A 中?若有则输出“是”,否则输出“否”。
P集合: 当一个决策问题存在一个O(nk)时间复杂度的算法时,则称此问题落在P 的集合中。

有一些决策问题,人类目前尚无法将他们归入集合 P 中。为了思考这些问题,于是在一般算法可采用的功能上,扩增以下虚构的新指令。这些新指令虽然不存在于现实中,但是对探讨这些难题的性质及彼此的关系,有很大的帮助。以下是这些虚构的新指令:

1. choice(S):自集合 S 中,选出会导致正确解的一个元素。当集合 S 中无此元素时,则可任意选择一个元素。

2. failure():代表失败结束。

3. success():代表成功结束。
其中 choice(S)可以解释成,在求解的过程中,神奇地猜中集合 S 中其中一个元素,使其结果是成功的;并且这三个指令只需要 O(1)时间来运行。当然,choice(S) 是如何快速猜中的,在此是不需讨论的,因为毕竟它只是虚构的。在添加这些虚构功能后,所设计出的算法,被称为非决定性算法(non-deterministic algorithm);相较之下,原来一般的算法,就称为决定性算法(deterministic algorithm)。利用非决定性算法,我们定义出另一个集合 NP:

NP: 当一个决策问题存在一个O(nk)时间复杂度的算法时,则称此问题落在NP 的集合中。

满足问题 (satisfiability problem,简称 SAT),就是一个NP中的典型难题。

满足问题:令 x 1,x 2,…,x n 代表布尔变量(boolean variables)(其值非真(true)即假(false)的变量)。令-xi 代表 xi 的相反数(negation)。一个布尔公式是将一些布尔变量及其相反数利用而且(and)和或(or)所组成的表达式。满足问题是判断是否存在一种指定每个布尔变量真假值的方式,使得一个布尔公式为真。

输入:一个 n 个变量的布尔公式

例如: (-x 1∨ -x 2 ∨ x 3)∧ (x 1 ∨ x 4)∧(x 2 ∨ -x 1)

输出:是否存在一种指定每个布尔变量真假值的方式,使得此公式为真?例如: 是(当 x 1=真,x 2=真,x 3=真,x 4=真时,此公式为真)

利用满足问题可以定义出NP-hard和NP-complete。但是我们需要一个问题转换的概念。问题转换技巧,其所需要转换的时间皆需在多项式时间(即 O (nk))内完成。利用此多项式时间的转换,我们可以将 NP中的难题创建起一些有趣的关系。

问题转换:针对两个问题 A 和 B ,如果存在一个 O (nk)时间的(决定性)算法,将每一个问题 A 的输入转换成问题 B 的输入,使得问题 A 有解时,若且惟若,问题 B 有解。此关系被称为,问题 A 转换成(reduce to)问题 B ,可表示成 A ∝ B 。

一个问题 L 被称为是 NP-hard,若且惟若,满足问题转换成 L(即满足问题∝L)。满足问题是 NP 中的难题,而 NP-hard 的问题则是满足问题派生(转换)出来的。

一个问题 L 被称为是 NP-complete,若且惟若,L ∈NP 而且 L ∈NP-hard。

史蒂芬库克(Stephen Cook)证明了一个十分重要的性质:

性质(A):“任一个 NP 内的问题都可以,在多项式时间内,被转换成满足问题。”

性质(B):“任一个 NP 内的问题都可以,在多项式时间内,被转换成任一个 NP-complete 问题。”

性质(C):“任一个 NP 内的问题都可以,在多项式时间内,被转换成任一个 NP-hard 问题。”

性质(D):“满足问题在集合 P 中,当且仅当,P=NP。”

比如说,一个决策性问题:输入一个整数x, 请回答x是否为偶数(even number)。我们利用一个程序判断x除以2是否整除即可得到最后结果 。此程序是决定性算法, 并且其时间复杂度为O(1)=O(n0), 因此此问题落入P集合中。

再举一个例子,下面是满足问题的一个非决定性算法。

Algorithm satisfiability (E (x 1, … , xn ))

{Step 1: for i =1 to n do

xi ←choice (true, false) /*利用 choice 直接猜中 xi 的真假值*/

Step 2: if E (x 1, … , x n) is true then success () /*计算此布尔公式是否为真*/

    else failure ();
}


上述的非决定性算法的时间复杂度为O(n1)即代表满足问题落入NP集合中。

相关

  • 洗手洗手,是为了清除尘土、污垢和微生物而清洁手的行为。洗手可以使用水、其他液体或者肥皂来完成,也可以不使用这些东西。某些地区没有自来水,人们可以打井来使用井水,也可以将雨水
  • 严州严州,中国唐朝设置的州。武德四年(621年)以桐庐县、分水县、建德县置严州,治所在今建德市梅城镇。武德七年(624年)废严州,以桐庐县属睦州。同年,分水县省入桐庐县,建德县省入桐庐县、
  • Zincke醛Zincke醛(Zincke aldehydes)即5-氨基-2,4-戊二烯醛类,属于供体-受体双烯类(donor-acceptor dienes),是吡啶盐与两分子仲胺发生作用然后水解得到的产物。此反应与 Zincke 反应类似,
  • 李罗权李罗权(英语:Louis Lee,1947年4月20日-),台湾地球科学家,专长太空物理及地球物理学。生于台湾彰化县田尾乡。曾经担任中华民国国家太空中心主任一职,任内经历福尔摩沙卫星二号的成功
  • 荷兰裔加拿大人荷兰裔加拿大人(英语:Dutch Canadians;荷兰语:Nederlandse Canadezen)指的是拥有荷兰人血统的加拿大国民。根据2006年的加拿大人口普查,一共有1,035,965名加拿大人拥有纯正或部分
  • 新竹分院国立台湾大学医学院附设医院,简称台大医院(英语:National Taiwan University Hospital),是台湾一所公立医院,乃台湾第一所提供西式医疗服务的政府医疗机构,总院区位于台北市中山南
  • 畅销电子游戏系列列表本列表列出了系列总销量或总出货量在500万以上的电子游戏,其中对于电脑游戏,包括了资料片的销量或出货量。
  • 堀田满堀田满(日语:堀田 満,1935年-)是一个以研究天南星科植物而著名的日本植物学家。1935年,堀田満出生于日本大阪。1960年,他毕业于大阪府立大学农业系。同年,他参加了京都大学举办的汤
  • 金辅铉金辅铉(朝鲜语:김보현,1871年8月19日-1955年9月2日),本贯全州金氏,生于朝鲜王朝平安道(今平安南道大同郡)的一个农民家庭。金膺禹是他的父亲,在他年幼时过世。金辅铉和李宝益结婚后,生
  • 福建协和神学院福建协和神学院是曾经存在于中国福建省福州市仓山的一所基督教新教神学院。1928年,福州美以美会在麦园路的美以美会福州年议会旧址建立道学院,学制4年,招生条件为初中毕业生。1