首页 >
整数分解
✍ dations ◷ 2025-11-24 02:35:54 #整数分解
在数学中,整数分解(英语:integer factorization)又称素因数分解(prime factorization),是将一个正整数写成几个约数的乘积。例如,给出45这个数,它可以分解成
3
2
×
5
{displaystyle 3^{2}times 5}
。根据算术基本定理,这样的分解结果应该是独一无二的。这个问题在代数学、密码学、计算复杂性理论和量子计算机等领域中有重要意义。完整的因子列表可以根据约数分解推导出,将幂从零不断增加直到等于这个数。例如,因为
45
=
{displaystyle 45=,}
3
2
×
5
{displaystyle 3^{2}times 5}
,由此可知,45可以被30 ×50,30×51,31×50,31×51,32×50,和32×51,或者 1,5,3,9,15,和 45整除。相对应的,约数分解只包括约数因子。参见约数分解算法。给出两个大约数,很容易就能将它们两个相乘。但是,给出它们的乘积,找出它们的因子就显得不是那么容易了。这就是许多现代密码系统的关键所在。如果能够找到解决整数分解问题的快速方法,几个重要的密码系统将会被攻破,包括RSA公钥算法和Blum Blum Shub(英语:Blum Blum Shub)随机数发生器。尽管快速分解是攻破这些系统的方法之一,仍然会有其它的不涉及到分解的其它方法。所以情形完全可能变成这样:整数分解问题仍然是非常困难,这些密码系统却是能够很快攻破。有的密码系统则能提供更强的保证:如果这些密码系统被快速破解(即能够以多项式时间复杂度破解),则可以利用破解这些系统的算法来快速地(以多项式时间复杂度)分解整数。换句话说,破解这样的密码系统不会比整数分解更容易。这样的密码系统包括Rabin密码系统(RSA的一个变体)以及Blum Blum Shub随机数发生器。2005年,作为公共研究一部分的有663个二进制数位之长的RSA-200已经被一种一般用途的方法所分解。如果一个大的,有n个二进制数位长度的数是两个差不多大小相等的约数的乘积,现在还没有很好的算法来以多项式时间复杂度分解它。这就意味着没有已知算法可以在O(nk)(k为常数)的时间内分解它。但是现在的算法也是比Θ(en)快的。换句话说,现在我们已知最好的算法比指数数量级时间要快,比多项式数量级时间要慢。已知最好的渐近线运行时间是普通数域筛选法(GNFS)。时间是:对于平常的计算机,GNFS是我们已知最好的对付n个二进制数位大约数的方法。不过,对于量子计算机, 彼得·秀尔在1994年发现了一种可以用多项式时间来解决这个问题的算法。如果大的量子计算机建立起来,这将对密码学有很重要的意义。这个算法在时间上只需要O(n3),空间只要O(n)就可以了。 构造出这样一个算法只需要2n量子位。2001年,第一个7量子位的量子计算机第一个运行这个算法,它分解的数是15。现在还不确切知道整数分解属于哪个复杂度类。我们知道这个问题的判定问题形式(“请问N是否有一个比M小的约数?”)是在NP与反NP之中。因为不管是答案为是或不是,我们都可以用一个素因数以及该素因数的素数证明来验证这个答案。由秀尔算法可知,这个问题在BQP中。大部分的人则怀疑这个问题不在P、NP完全、以及反NP完全这三个复杂性类别中。如果这个问题可以被证明为NP完全或反NP完全,则我们便可推得NP=反NP。这将会是个很震撼的结果,也因此大多数人猜想整数分解这个问题不在上述的复杂性类别中。也有许多人尝试去找出多项式时间的算法来解决这个问题,但是都尚未成功,因此这个问题也被多数人怀疑不在P中。有趣的是,判定一个整数是否是素数则比分解该整数简单许多。AKS算法证明前者可以在多项式时间中解决。 测试一个数是否为素数是RSA算法中非常重要的一环,因为它在一开始的时候需要找很大的素数。一个特别的因子分解算法的运行时间依赖它本身的未知因子:大小,类型等等。在不同的算法之间运行时间也是不同的。一般用途算法的运行时间仅仅依赖要分解的整数的长度。这种算法可以用来分解RSA数。大部分一般用途算法基于平方同余方法。
相关
- 空间空间为一种抽象观念,乃是物质与事件存在并有彼此相对关系的客观形式。与“时间”相对,通常指四方上下。古典物理的解释:宇宙中物质实体之外的部分称为空间。近代物理的解释:宇宙
- 花生花生过敏(Peanut allergy)是对花生的食物过敏,和树坚果过敏不同。身体的过敏症状包括痒、荨麻疹、血管性水肿、皮肤炎、流鼻涕、哮喘、腹痛、低血压、腹泻,也可能会心搏停止。可
- 阿米替林阿米替林(Amitriptyline),商品名称Elavil,是使用最广泛的一种三环类抗抑郁药。 阿米替林可以治疗许多精神障碍,包括重度抑郁症和焦虑症,有时候也用来治疗精神病、注意力缺陷多动
- 回肠在人体解剖学中,回肠是人的消化器官之一。回肠(Ileum)是小肠的最后一段,在十二指肠和空肠的下面。人的回肠约占小肠全长的五分之三,约有2-4米长。回肠多盘于腹腔右下部,借小肠系膜
- Hf4f14 5d2 6s22, 8, 18, 32, 10, 2蒸气压第一:658.5 kJ·mol−1 第二:1440 kJ·mol−1 第三:2250 kJ·mol主条目:铪的同位素.mw-parser-output ruby.zy{text-align:justify;text
- 缓冲溶液缓冲溶液(德语:Pufferlösung;英语:buffer solution;法语:solution tampon)指由“弱酸及其共轭碱之盐类”或“弱碱及其共轭酸之盐类”所组成的缓冲对配制的,能够在加入一定量其他物
- 苏呼米坐标:43°00′05″N 41°01′24″E / 43.0015252°N 41.0234153°E / 43.0015252; 41.0234153苏呼米(阿布哈兹语:Аҟəа,格鲁吉亚语:სოხუმი,明格列尔语:სოხუმი,俄语:С
- 施莱尔马赫弗里德里希·施莱尔马赫(又译为士来马赫,德语:Friedrich Daniel Ernst Schleiermacher;1768年11月21日-1834年2月12日),德国19世纪神学家及哲学家,被称为现代神学、现代诠释之父,主张
- 丹尼尔·格拉次曼丹尼尔·格拉次曼(英语:Daniel Glazman,1967年-)是一名程序员,以开发Mozilla的Editor组件、Mozilla Composer组件以及基于Composer的独立软件Nvu而闻名,Nvu是由Linspire公司赞助。
- 鲸目鲸下目 (学名:Cetacea)旧称鲸目,是偶蹄目的演化支之一,包含了大约八十多种大型的有胎盘海洋哺乳动物,即鲸鱼﹑海豚和鼠海豚。鲸下目的现存物种可分为两个小目:齿鲸(Odontoceti)及须鲸(My
