首页 >
整数分解
✍ dations ◷ 2025-11-27 05:20:31 #整数分解
在数学中,整数分解(英语:integer factorization)又称素因数分解(prime factorization),是将一个正整数写成几个约数的乘积。例如,给出45这个数,它可以分解成
3
2
×
5
{displaystyle 3^{2}times 5}
。根据算术基本定理,这样的分解结果应该是独一无二的。这个问题在代数学、密码学、计算复杂性理论和量子计算机等领域中有重要意义。完整的因子列表可以根据约数分解推导出,将幂从零不断增加直到等于这个数。例如,因为
45
=
{displaystyle 45=,}
3
2
×
5
{displaystyle 3^{2}times 5}
,由此可知,45可以被30 ×50,30×51,31×50,31×51,32×50,和32×51,或者 1,5,3,9,15,和 45整除。相对应的,约数分解只包括约数因子。参见约数分解算法。给出两个大约数,很容易就能将它们两个相乘。但是,给出它们的乘积,找出它们的因子就显得不是那么容易了。这就是许多现代密码系统的关键所在。如果能够找到解决整数分解问题的快速方法,几个重要的密码系统将会被攻破,包括RSA公钥算法和Blum Blum Shub(英语:Blum Blum Shub)随机数发生器。尽管快速分解是攻破这些系统的方法之一,仍然会有其它的不涉及到分解的其它方法。所以情形完全可能变成这样:整数分解问题仍然是非常困难,这些密码系统却是能够很快攻破。有的密码系统则能提供更强的保证:如果这些密码系统被快速破解(即能够以多项式时间复杂度破解),则可以利用破解这些系统的算法来快速地(以多项式时间复杂度)分解整数。换句话说,破解这样的密码系统不会比整数分解更容易。这样的密码系统包括Rabin密码系统(RSA的一个变体)以及Blum Blum Shub随机数发生器。2005年,作为公共研究一部分的有663个二进制数位之长的RSA-200已经被一种一般用途的方法所分解。如果一个大的,有n个二进制数位长度的数是两个差不多大小相等的约数的乘积,现在还没有很好的算法来以多项式时间复杂度分解它。这就意味着没有已知算法可以在O(nk)(k为常数)的时间内分解它。但是现在的算法也是比Θ(en)快的。换句话说,现在我们已知最好的算法比指数数量级时间要快,比多项式数量级时间要慢。已知最好的渐近线运行时间是普通数域筛选法(GNFS)。时间是:对于平常的计算机,GNFS是我们已知最好的对付n个二进制数位大约数的方法。不过,对于量子计算机, 彼得·秀尔在1994年发现了一种可以用多项式时间来解决这个问题的算法。如果大的量子计算机建立起来,这将对密码学有很重要的意义。这个算法在时间上只需要O(n3),空间只要O(n)就可以了。 构造出这样一个算法只需要2n量子位。2001年,第一个7量子位的量子计算机第一个运行这个算法,它分解的数是15。现在还不确切知道整数分解属于哪个复杂度类。我们知道这个问题的判定问题形式(“请问N是否有一个比M小的约数?”)是在NP与反NP之中。因为不管是答案为是或不是,我们都可以用一个素因数以及该素因数的素数证明来验证这个答案。由秀尔算法可知,这个问题在BQP中。大部分的人则怀疑这个问题不在P、NP完全、以及反NP完全这三个复杂性类别中。如果这个问题可以被证明为NP完全或反NP完全,则我们便可推得NP=反NP。这将会是个很震撼的结果,也因此大多数人猜想整数分解这个问题不在上述的复杂性类别中。也有许多人尝试去找出多项式时间的算法来解决这个问题,但是都尚未成功,因此这个问题也被多数人怀疑不在P中。有趣的是,判定一个整数是否是素数则比分解该整数简单许多。AKS算法证明前者可以在多项式时间中解决。 测试一个数是否为素数是RSA算法中非常重要的一环,因为它在一开始的时候需要找很大的素数。一个特别的因子分解算法的运行时间依赖它本身的未知因子:大小,类型等等。在不同的算法之间运行时间也是不同的。一般用途算法的运行时间仅仅依赖要分解的整数的长度。这种算法可以用来分解RSA数。大部分一般用途算法基于平方同余方法。
相关
- 天花天花疫苗用以预防天花。古代民众预防天花的方法。其具体方法是把天花病患者身上的痘痂制浆(脓),以小刀拭在受种者的皮肤之下,使之产生免疫力,以预防天花。另一个方法,就是让受种者
- Ksup+/sup钾离子(K+)是金属元素钾的阳离子。钾是人类营养中的一种必要宏量元素,也是动物细胞中主要的阳离子,同时在体液及电解质平衡上非常的重要。大量血浆(约每天180升)在肾脏的肾小球处
- 美沙拉嗪美沙拉嗪(英语:Mesalazine,又名美沙拉秦,5'-氨基水杨酸(5-ASA)),是一种氨基水杨酸类抗炎药,用于治疗炎性肠病,包括溃疡性结肠炎,直肠炎,克罗恩病等。美沙拉嗪以口服形式服用缓解克罗恩病
- 中爪哇省中爪哇省(印尼语:Jawa Tengah)是印尼的一个省,位于爪哇岛的中部,首府是三宝珑。现任省长是甘查尔·普拉诺沃,由副省长代理。中爪哇省位于东爪哇省及西爪哇省之间,北面是爪哇海,南面
- 勿加泗勿加泗是印度尼西亚的城市,由西爪哇省负责管辖,位于该国东南部爪哇岛西部,面积210.49平方公里,2010年人口2,378,211,人口密度为每平方公里11,298人。泗水万隆
- 本体论论证本体论证明(Ontological argument)是证明上帝存在的一种理论,属于先验性的证明方式。该理论最早由中世纪哲学家伊本·西那和安瑟伦提出。后世的哲学家,包括谢哈布丁·苏哈拉瓦迪
- 非处方药非处方药(over-the-counter (OTC) drug),又称为成药,指的是未经处方而可以从药店购买得到的药品,与处方药相对。这些药品临床应用时间较长、药效确定、药物不良反应较少,患者不须
- 哈萨克斯坦哈萨克斯坦国家图书馆(哈萨克语:Национальная Библиотека Республики Казахстан),是哈萨克斯坦的国家图书馆。这座图书馆于1931年建
- 泰米尔语泰米尔语(தமிழ் Tamiḻ)是一种有超过二千年历史的语言,属于达罗毗荼语系,通行于印度南部、斯里兰卡东北部。它是泰米尔纳德邦和本地治里的官方语言。在印度洋及南太平洋不
- 第一批异形词整理表《第一批异形词整理表》,是中华人民共和国教育部、国家语言文字工作委员会于2001年12月19日发布,2002年3月31日试行的“规定了普通话书面语中异形词的推荐使用词形”的规范。
