非传递博弈

✍ dations ◷ 2025-11-27 15:27:29 #非传递博弈

非传递博弈是一个通过多种策略得到一个或者更多“循环”选择的博弈。在非传递博弈中,如果策略A优于策略B,策略B优于策略C,并推导出策略A优于策略C。

非传递博弈的雏形是剪刀、石头、布。在概率博弈(probabilistic games)中,比如赌便士(英语:Penney's game)以一种更微妙的方式违反传递律,常常被表述为一个概率悖论(probability paradox)。

一些非传递博弈的例子:

那么,在培养皿中,A族群能杀死附近的B族群,B族群则能靠着生长速度来排挤C族群,而C族群又能靠着自体免疫力来排挤A族群!

此时,如果我们让路人乙和路人甲比赛,会有以下四种结果:

因此,赌局对路人乙有利,她赢的几率为 2 3 {\displaystyle {\frac {2}{3}}}

类似的分析可知:路人甲胜路人丙,几率 2 3 {\displaystyle {\frac {2}{3}}} ,路人丙胜路人丁,几率 2 3 {\displaystyle {\frac {2}{3}}} ,但这并不表示路人乙一定也可以打败路人丁,因为,若真叫两人上场比赛,怪的是,路人丁会有 2 3 {\displaystyle {\frac {2}{3}}} 的几率获胜!

这说明了几率的不可递移性。

更经典的例子是下列三人的骰子:

三人各有 5 9 {\displaystyle {\frac {5}{9}}} 的几率打败另一人。(路人庚打败路人戊,路人戊打败路人己,而路人己又能打败路人庚)

则我们可以发现小丸子能打败小玉、花轮、丸尾;小玉能打败花轮、美环、滨崎;花轮能打败美环、丸尾、野口;美环能打败小丸子、丸尾、滨崎;丸尾能打败小玉、滨崎、野口;滨崎能打败小丸子、花轮、野口;野口能打败小丸子、小玉、美环(各有 5 9 {\displaystyle {\frac {5}{9}}} 的几率)。因此,对于任意两人,都有第三个人同时能够打败他们!

则:

因此,对于当中的任意两人,都有第三个人同时能够打败他们。

相关

  • 双链RNA病毒核糖核酸病毒(英语:RNA virus),又称RNA病毒,其遗传物质为RNA,这些核糖核酸通常是单链RNA(ssRNA),但是也可能是双链RNA(dsRNA)。由RNA病毒感染造成的著名人类疾病包括艾滋病(AIDS)、埃博
  • 美国人口2019年估计,美国的人口总数约329,730,000人。美国人口高度城镇化,在2008年时约有81%人口居住在城市及其郊区(同时期世界城镇化率为54%),这使得美国有许多土地上无人居住。加利福
  • 皮脂腺皮脂腺是一种全泌腺,作用为分泌油脂,油脂对于人类可以固定毛发,防止毛发因纷乱而阻碍视线,湿润的毛发的结构容易打结并且容易沾纳污垢,而有油脂的毛发不易散乱,对于皮肤表面,则会在
  • 纳克纳克可能指:
  • Léri-Weill软骨骨生成障碍综合症Léri-Weill软骨骨生成障碍综合征(英语:Léri-Weill dyschondrosteosis,LWD),是一种罕见的基因疾病,肇因于性染色体上拟常染色体区的“SHOX(英语:SHOX)基因”突变。此病将造成患者身
  • 消遣功能休闲活动(英语:recreation),又称康乐或消遣,一种在余暇时进行的活动。通常进行消遣的动机是为了自己的快乐,而不是为了工作或一些正式的理由。在闲暇时会寻找消遣活动,被认为是一种
  • 虫草素虫草素, 或者是 3'-脱氧腺苷, 是腺嘌呤核糖核苷的衍生物,两者的差别在于前者在核糖的3位上比后者少一个氧。该物质最早是从真菌虫草(Cordyceps militaris)中获得的,但现在已经
  • 台湾语假名台湾语假名(タイヲァヌギイカナ,日语:台湾語仮名〔臺灣語假名〕/たいわんごかな,白话字:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI
  • 无精症无精子症(英语:Azoospermia)是指男性精液中没有精子的症状。无精子症与男性不育密切相关,但许多都是可以治疗的。在人类中,无精子症影响了约1%的男性群体,造成了大约20%的男性不育
  • 长台关楚简长台关楚简是一批在中国河南信阳长台关一号楚国墓葬中发现的竹简,于1957年3月出土。该批竹简共148枚,著作时间大约在战国中期。从内容来判断,这批竹简可以分为两组。首组119枚,