摄动理论

✍ dations ◷ 2025-06-17 20:41:16 #泛函分析,数学物理,微扰理论,微分方程

摄动理论使用一些特别的数学方法来对于很多不具精确解的问题给出近似解,这些方法从相关的较简单问题的精确解开始入手。摄动理论将原本问题分为具有精确解的较简单部分与不具精确解的微扰部分。摄动理论适用的问题通常具有以下性质:通过加入一个微扰项于较简单部分的数学表述,可以计算出整个问题的近似解。

摄动理论计算出来的解答通常会表达为一个微小参数的幂级数。摄动理论解答与精确解之间的差别,可以用这微小参数来做数量比较。幂级数的第一个项目是精确解的解答。后面的项目描述解答的修正。这修正是因为精确解与原本问题的“完全解”之间的误差而产生的。更正式地,完全解 A {\displaystyle A\,\!} 的近似可以表达为一个级数:

在这例子里, A 0 {\displaystyle A_{0}\,\!} 是简单又有“精确解”的问题的精确解, A 1 , A 2 , {\displaystyle A_{1},\,A_{2},\,\!} 代表由某种系统程序反复地找到的高阶项目修正。因为 ϵ {\displaystyle \epsilon \,\!} 的值很微小,这些高阶项目修正应该会越来越不重要。

摄动理论的标准阐述主要是以微扰的阶数来分辨:一阶摄动理论或二阶摄动理论。再来就是以微扰的简并度来分辨:无简并或有简并。有简并的摄动,又称为奇异摄动(singular perturbation),比较难解,必须用到更进阶的理论。

本段落讲述微分方程的一阶微扰理论。为了简单易解,假设零微扰系统的解答是不简并的。

许多常微分方程或偏微分方程可以表达为

其中, D {\displaystyle D\,\!} 是某特定微分算子, λ {\displaystyle \lambda \,\!} 是其本征值。

假设微分算子可以写为

其中, ϵ {\displaystyle \epsilon \,\!} 是微小的度量。

又假设我们已知道 D ( 0 ) {\displaystyle D^{(0)}\,\!} 的解答的完备集 { f i ( 0 ) ( x ) } {\displaystyle \{f_{i}^{(0)}(x)\}\,\!} ;其中,解答 f i ( 0 ) ( x ) {\displaystyle f_{i}^{(0)}(x)\,\!} D ( 0 ) {\displaystyle D^{(0)}\,\!} 的本征值为 λ i ( 0 ) {\displaystyle \lambda _{i}^{(0)}\,\!} 的本征函数。用方程表达,

还有,这一集合的解答 { f i ( 0 ) ( x ) } {\displaystyle \{f_{i}^{(0)}(x)\}\,\!} 形成一个正交归一集:

其中, δ i j {\displaystyle \delta _{ij}\,\!} 是克罗内克函数。

取至零阶,完全解 g ( x ) {\displaystyle g(x)\,\!} 应该相当接近集合里一个零微扰解。设定这零微扰解为 f n ( 0 ) ( x ) {\displaystyle f_{n}^{(0)}(x)\,\!} 。用方程表达,

其中, O {\displaystyle {\mathcal {O}}\,\!} 采用大O符号来描述函数的渐近行为。

完全解的本征值也可近似为

将完全解 g ( x ) {\displaystyle g(x)\,\!} 写为零微扰解的线性组合,

其中,除了 c n {\displaystyle c_{n}\,\!} 以外,所有的常数 c m ,   m n {\displaystyle c_{m},\ m\neq n\,\!} 的值是 O ( ϵ ) {\displaystyle {\mathcal {O}}(\epsilon )\,\!} ;只有 c n {\displaystyle c_{n}\,\!} 的值是 O ( 1 ) {\displaystyle {\mathcal {O}}(1)\,\!}

将公式 (2)代入公式 (1),乘以 f n ( 0 ) ( x ) {\displaystyle f_{n}^{(0)}(x)\,\!} ,利用正交归一性,可以得到

这可以很容易地改变为一个简单的线性代数问题,一个寻找矩阵的本征值的问题:给予 m A n m c m = λ c n {\displaystyle \sum _{m}A_{nm}c_{m}=\lambda c_{n}\!\,\!} ,求 λ {\displaystyle \lambda \,\!} ;其中, A n m {\displaystyle A_{nm}\,\!} 是矩阵元素:

我们并不需要解析整个矩阵。注意到线性方程里的每一个 c m {\displaystyle c_{m}\,\!} 都是 O ( ϵ ) {\displaystyle {\mathcal {O}}(\epsilon )\,\!} ;只有 c n {\displaystyle c_{n}\,\!} 的值是 O ( 1 ) {\displaystyle {\mathcal {O}}(1)\,\!} 。所以,取至 ϵ {\displaystyle \epsilon \,\!} 一阶,线性方程可以很容易地解析为

这就是一阶摄动理论的本征值解答。一阶本征值数修正是

取至一阶,函数 g ( x ) {\displaystyle g(x)\,\!} 可以用类似的推理求得。设定

那么,公式 (1)变为

取至一阶,展开这方程。经过一番运算,可以得到

由于 { f i ( 0 ) ( x ) } {\displaystyle \{f_{i}^{(0)}(x)\}\,\!} 是一个完备集, f n ( 1 ) ( x ) {\displaystyle f_{n}^{(1)}(x)\,\!} 可以写为

请注意,这方程右手边的总和表达式,并不含有 f n ( 0 ) ( x ) {\displaystyle f_{n}^{(0)}(x)\,\!} 项目。任何 f n ( 0 ) ( x ) {\displaystyle f_{n}^{(0)}(x)\,\!} 的贡献,可以与公式 (4)的零阶项目相合并。

将公式 (6)代入公式 (5),可以得到

将这方乘式两边都乘以 f j ( 0 ) ( x ) {\displaystyle f_{j}^{(0)}(x)\,\!} ,再随著 x {\displaystyle x\,\!} 积分,利用正交归一性,可以得到

稍加编排,改变下标 j {\displaystyle j\,\!} m {\displaystyle m\,\!} 。那么,一阶本征函数修正 f n ( 1 ) ( x ) {\displaystyle f_{n}^{(1)}(x)\,\!} 可以写为

相关

  • 厌氧呼吸呼吸作用,又称为细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解并转化能量的化学过程,也称为释放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作
  • 总统公民奖章总统公民奖章(英语:Presidential Citizens Medal),是美国第二高的平民奖,仅次于总统自由勋章,每年由美国总统颁发,获奖人数不定。总统公民奖章由美国总统尼克森(Richard M. Nixon)于1
  • 真情流露真情流露可以指:
  • 苏必略湖苏必利尔湖(英语:Lake Superior)是北美洲五大湖中最大的一座,被加拿大的安大略省与美国的明尼苏达州、威斯康星州和密歇根州所环绕。苏必利尔湖是世界上面积最大的淡水湖;以蓄水
  • 独联体杯独联体杯(俄语:Кубок чемпионов Содружества, Кубок Содружества, Кубок чемпионов содружества стр
  • 急征店员《急征店员》(英语:Help Wanted)是美国系列电视动画《海绵宝宝》的试播集,也是第1季第1集的一部分。它最初于1999年5月1日于尼克国际儿童频道播出,被排在1999年尼克频道儿童选择
  • 德川笃守德川笃守(1856年11月11日-1924年10月19日),后改名德川广光,日本御三卿清水德川家第7代当主。安政三年(1856年),他在江户驹込的水户藩上屋敷(小石川)出生,取幼名常三郎,长大后在藩校弘道
  • Video 2000Video 2000(或称作V2000、Video Compact Cassette、VCC)是一种由飞利浦与Grundig公司开发出的一种与JVC的VHS格式和索尼的Betamax格式竞争的一种家用录像带格式标准。其上市贩
  • 戈耳狄俄斯之结戈耳狄俄斯之结(, 英文。粤语:哥帝安绳结)是亚历山大大帝在弗里吉亚首都戈尔迪乌姆(英语:gordium)时的传说故事。一般作为使用非常规方法解决不可解问题的隐喻。根据传说,这个结在
  • 张世佩张世佩(?-1622年),明朝末年山东承宣布政使司曹州(今山东省菏泽市)人。天启年间张世佩与于弘志、徐鸿儒共传王森“闻香教”。徐鸿儒相信梁山泊演义故事,在梁家楼聚义,结纳张世佩,传说妖