Napster

✍ dations ◷ 2025-01-12 01:08:26 #Napster

Napster是一种提供线上音乐服务的软体,最初由约翰·范宁、肖恩·范宁和西恩·帕克共同创立的档案共享服务。Napster是第一个被广泛应用的点对点(Peer-to-Peer,P2P)音乐共享服务,它极大幅度地影响了人们,特别是对于大学生使用互联网的方式。而它的出现,也使得音乐爱好者间共享MP3歌曲变得容易,却也因此招致了影音界对其大规模侵权行为的指责。尽管在法庭的责令下该服务已经终止,但它却为其他点对点文件共享程序——如Kazaa,Limewire和BearShare——的拓展铺好了路,且对这种方式的文件共享的控制,亦变得愈加困难。如今Napster以经营付费服务为主,而免费的Napster的流行和回响使其在电脑界和娱乐业里成为一个传奇的象征。

美国重金属乐队金属制品(Metallica)发现他们的一首样本曲目“I Disappear”早在发布前就流传于Napster网络。这最终使得该曲目在美国各地的数个电台上被播放,乐队发现他们过去的全部曲目也可在Napster网络上获得,并在当时与乐迷之间发生论战。

Napster对非法行为的包庇激起数家主要唱片公司的愤怒,他们联合起来于1999年12月递交了对该共享服务的诉讼。尽管诉讼的目的是要关闭Napster,然而随着审讯的深入,该服务却愈加流行,审讯反而成了对该服务最好的推广和宣传。不久吸引了上百万的用户,其中大部分为学生。

2008年百思买以1.21亿美元价格收购了Napster,2011年10月Rhapsody从百思买收购了Napster,根据协议,百思买将拥有其少数股权,交易细节并没有披露 。Napster将被关闭,它的用户将合并到Rhapsody 。2016年,Rhapsody重新把名字改回Napster。

相关

  • 虐囚门事件阿布格莱布监狱虐囚事件(英语:Abu Ghraib torture and prisoner abuse;阿拉伯语:فضيحة التعذيب في سجن أبو غريب‎),又称美军虐待伊拉克战俘事件、美英联
  • 隆胸隆胸是一种乳房整形手术,包括将乳房植体植入乳房内,或是自体脂肪移植的乳房整型,目的是为了增加乳房大小、调整乳房形状及质感。在重建(英语:Reconstructive surgery)整形中,隆胸可
  • 国际稻米节国际稻米节(International Rice Festival)是位于美国路易斯安那州的克罗利市一年一度庆祝稻米的节日,在每年十月的第三个周末举行。它是路易斯安那州历史最为悠久的农业节日,也
  • 自我中心主义根据让·皮亚杰的认知发展理论,认为儿童把注意力集中在自己的行为和观点上这现象,称为自我中心主义(或称自我主义)。自我中心主义在对自己的观点方面和利己主义和个人主义还有唯
  • 阳东区阳东区是中国广东省阳江市下辖的一个市辖区。2014年10月22日国务院批准撤销阳东县设立阳江市阳东区。1988年2月成立阳江市,划分为阳西县、阳东区、江城区。1991年6月22日撤消
  • 蝰蛇科蝰蛇科(Viperidae)又名蝮蛇科,是一个分布于全世界的毒蛇科。蝰蛇(Viperinae)和蝮蛇(Crotalinae)是这一科的代表物种,它们体粗尾细,长着三角形的头。毒液中含有血毒素,有些种类另含神经
  • 斯拉芬卡·德拉库利奇斯拉芬卡·德拉库利奇(塞尔维亚-克罗地亚语:Slavenka Drakulić),克罗地亚女作家。现居瑞典。1949年生于克罗地亚的里耶卡,在萨格勒布大学主修比较文学和社会学,之后成为记者、
  • 四明山 (浙江)四明山,又名句余山,是中国浙江省东北部的一座山脉,为天台山向北延伸的支脉,北接宁绍平原,跨余姚市、宁波市海曙区、奉化区、嵊州市、绍兴市上虞区、新昌市等县市,山脉整体呈南西-
  • 商业革命商业革命,(英文:Commercial Revolution),指欧洲从中世纪到工业化之间的一段历史时期,大约兴盛时晚期持续到十八世纪初期。由于新航线的发现,欧洲与东方建立了直接联系,并且发现了美洲,殖民于海外,从而使商品交换的规模扩大,进而引发了金融、保险、投资方面的变革,和出现了新的经济理论,商品经济逐步取代自然经济成为社会经济的主导。商业革命是欧洲工业革命的前奏。“商业革命”一词是20世纪中叶,由经济史学家罗伯特·萨巴提诺·洛佩斯(Roberto Sabatino Lopez)提出来的,用来分析英国
  • 恒真式恒真式(tautology)又称为套套逻辑、恒真句、恒真式或重言式等。恒真式是指在任何解释下皆为真的命题,例如经典逻辑中的 P ∨ ¬ P {\displaystyle P\vee \neg P} 个变项的式子,总共会有2n种组合。因此有时会非常复杂。例如以下式子:可将 A {\displaystyle A} ),故此式为恒真式。另外