闭回路极点

✍ dations ◷ 2025-04-03 17:00:47 #控制理论

闭回路极点是S平面上闭回路传递函数极点(或是特征值)的位置。开回路传递函数等于方块图上前向路径(forward path)所有传递函数方块的积。闭回路传递函数的计算方式是将开回路传递函数除以(反馈回路中所有传递函数方块的积加1)。闭回路传递函数也可以用方块图的处理或是代数的处理来计算。只要找到了系统的闭回路传递函数,可以求解其特征方程式来找闭回路极点。特征方程式就是让闭回路传递函数分母为零所得的方程式。

在控制理论中主要有两种分析回授系统的方式:传递函数法(频域法)及状态空间法(时域法)。若使用传递函数法,主要会关注传递函数的极点及零点在S平面的位罝。设计者会关注两种不同的转移函数。若不让反馈回路运作时,所探讨的是开回路传递函数,若考虑反馈回路运作时,所探讨的是闭回路传递函数。有关这二个的关系,请参考根轨迹图。

线性非时变系统对任何输入的响应可以由其冲激响应及阶跃响应来推导。系统的特征函数可以完全决定其自然响应(natural response)。在控制理论中,任何输入的响应是暂态响应及稳态响应(英语:steady-state response)的结果。因此特征值的仆位置(也就是闭回路的极点)就是重要的设计参数。

在根轨迹图中,常用增益为其参数。根轨迹上的每一点都对应不同的,而且都符合角度条件及量值条件。若是负反馈系统,随着增益的增加,根轨迹上的闭回路极点会从开回路极点往闭回路零点移动。因此根轨迹图常用在比例控制的设计上,也就是 G c = K {\displaystyle {\textbf {G}}_{c}=K}

考虑一个控制器为 G c = K {\displaystyle {\textbf {G}}_{c}=K} 、受控体 G ( s ) {\displaystyle {\textbf {G}}(s)} 、反馈路径传递函数为 H ( s ) {\displaystyle {\textbf {H}}(s)} 简单的反馈系统。(若是单位反馈系统,表示 H ( s ) {\displaystyle {\textbf {H}}(s)} 为1,会省略该方块)。对于此系统,开回路传递函数为前向路径所有传递函数方块的积

整个闭回路方块的积为

因此,闭回路控制函数为

闭回路极点(或是特征值)是由求解特征值方程式 1 + K G H = 0 {\displaystyle {1+K{\textbf {G}}{\textbf {H}}}=0} 而来。一般而言特征值会是n个复数,n是特征多项式的阶数。

上述的作法对于单一输入单一输出(SISO)的系统有效。也可以延伸到多重输入多重输出(MIMO)的系统,也就是 G ( s ) {\displaystyle {\textbf {G}}(s)} K ( s ) {\displaystyle {\textbf {K}}(s)} 都是由传递函数所组成矩阵的系统。因此其极点为以下方程式的解

相关

  • 冶金学冶金学(英语:metallurgy)属于材料科学,是研究从矿石中提取金属,并用各种加工方法制成具有一定性能的金属材料的学科。冶金学也研究金属、金属互化物或其混合物(称为合金)的物理及化
  • 角秒؋ ​₳ ​ ฿ ​₿ ​ ₵ ​¢ ​₡ ​₢(英语:Brazilian cruzeiro) ​ $ ​₫ ​₯ ​֏ ​ ₠ ​€ ​ ƒ(英语:Florin sign) ​₣ ​ ₲ ​ ₴(英语:Hryvnia sign) ​ ₭ ​ ₺
  • 波形蛋白1GK4, 1GK6, 1GK7, 3G1E, 3KLT, 3S4R, 3SSU, 3SWK, 3TRT, 3UF1· structural constituent of eye lens · protein binding · protein C-terminus binding · identical
  • 角膜塑形镜角膜塑形术是一种眼科学的视力矫正术,又称OK 镜片,透过一种高透气式的硬式隐形眼镜,来改善日间的视力。与一般隐形眼镜不同的是,角膜塑形术使用的隐形眼镜是在夜间配戴,透过透明
  • 通货膨涨通货膨胀(英语:inflation,简称通胀)本意为货币流通数量增加,但也指向因货币流通数量增加,而使得物价水准在某一时期内,连续性地以相当的幅度上涨,也就是物价上升,货币购买力下降的现
  • 胺亚甲基谷氨酸胺亚甲基谷氨酸 (英语:Formiminoglutamic acid,简称FIGLU) 是组氨酸代谢的一个中间体。"FIGLU" 测试常被用来检测维生素B12或叶酸缺乏症以及肝病医学导航:遗传代谢缺陷代谢、k,
  • 宣州宣州区是中国安徽省宣城市下辖的一个区。面积2533平方千米,人口84万。邮政编码242000。区人民政府驻叠嶂中路。西汉时,在境内开始置宛陵县,西晋为宣城郡郡治。隋朝时,改为宣城县
  • 比利时国家足球队比利时国家足球队(荷兰语:Belgisch voetbalelftal,法语:Équipe de Belgique de football),是比利时的官方足球队,由比利时足球协会管理。比利时以往在国际大赛都有不俗成绩,曾夺得1
  • 阿尔瓦·古尔斯特兰德阿尔瓦·古尔斯特兰德(Allvar Gullstrand,1862年6月5日-1930年7月28日),出生于兰斯克鲁纳,逝世于斯德哥尔摩。是一位瑞典眼科医师。1894年到1927年间,古尔斯特兰德在乌普萨拉大学担
  • 赵世卿赵世卿(?-1615年),字象贤,号南渚,山东济南府历城县(今山东省济南市)人,明朝政治人物,隆庆辛未进士,万历间官至户部尚书。隆庆五年(1571年),登进士,授南京兵部主事。万历初年,张居正当国,以严治