引力时间膨胀

✍ dations ◷ 2025-06-07 10:20:35 #引力时间膨胀
引力时间膨胀(英语:Gravitational time dilation)是指在宇宙有不同势能的区域会导致时间以不同的速率度过的现象,引力导致的时空扭曲率越大,时间就过得越慢。爱因斯坦最初在自己的相对论中预测出这种现象,并其后由各种广义相对论实验中被证实。其中一种证实方法就是把两个原子钟放在不同的高度(因此来自地球的引力效应会有差别),它们在一段时间后所测到的时间会有些许差别。其差别极小极小,甚至要用到纳秒来作单位。引力时间膨胀首次由爱因斯坦于1907年提出,并是狭义相对论中参照对象的加速前进所导致的结果。在广义相对论中,它被视为是时空度规张量描述的在不同地点的固有时的差。庞德-雷布卡实验首次直接证实了这种现象的存在。引力时间膨胀会从大型天体引力场中加速的参考坐标或等效原理里明确地表现出来。更简单的来说,远离大型天体(就是储有更高势能)的钟表会走得更快,而接近大型天体的(储有较低势能)的便会走得更慢。所有加速参考坐标都会表现出这种效应,如高速赛车或太空航天飞机。旋转的物体如旋转木马和摩天轮等的引力时间膨胀,则是自旋产生的。根据套用了等效原理的广义相对论表明,所有加速的参考坐标都会产生一个引力场。根据广义相对论,惯性质量和引力质量都是同等的。并非所有引力场都是“弯形的”或是“圆形的”,其实例如赛车或太空航天飞机情况中,引力场是“平坦的”。所有重力加速度都会形成引力时间膨胀。有一条出自史瓦西度规的公式被用在计算于一个非旋转大型球对称天体附近时空的引力时间膨胀:t 0 = t f 1 − 2 G M r c 2 = t f 1 − r 0 r {displaystyle t_{0}=t_{f}{sqrt {1-{frac {2GM}{rc^{2}}}}}=t_{f}{sqrt {1-{frac {r_{0}}{r}}}}} ,其中以上公式只能应用于非旋转球对称大型天体之外,用于天体之内的公式为:t 0 = t f 1 − 2 G ( r i R ) 3 M r i c 2 = t f 1 − r i 2 r 0 R 3 {displaystyle t_{0}=t_{f}{sqrt {1-{frac {2G({frac {r_{i}}{R}})^{3}M}{r_{i}c^{2}}}}}=t_{f}{sqrt {1-r_{i}^{2}{frac {r_{0}}{R^{3}}}}}} 其中要是有观测者在球体以内,这个球体就可以被分成两部分:一个在表面的中空球体,另一个在里面的实心球体。这观测者在中空球体以内,假设并无质量。但考虑到他的引力势能,也就当作中空球体不存在。剩下的就只有里面的实心球体,而其质量为:M i = V i ρ = 4 3 π r i 3 ρ = 4 3 π r i 3 M V = 4 3 π r i 3 M 4 3 π R 3 = r i 3 R 3 M {displaystyle M_{i}=V_{i}rho ={frac {4}{3}}pi r_{i}^{3}rho ={frac {4}{3}}pi r_{i}^{3}{frac {M}{V}}={frac {4}{3}}pi r_{i}^{3}{frac {M}{{frac {4}{3}}pi R^{3}}}={frac {r_{i}^{3}}{R^{3}}}M} ,其中意思就是引力时间膨胀在非旋转大型球对称天体的表面达到最强,而在其中心达到最小。在史瓦西度规里,如果一个自由落体的轨道半径大于 3 2 ⋅ r 0 {displaystyle {frac {3}{2}}cdot r_{0}} ,其轨道能呈圆形。静止的钟的公式一列于上方,而对于一个在圆形轨道上的钟,公式就是 t 0 = t f 1 − 3 2 ⋅ r 0 r {displaystyle t_{0}=t_{f}{sqrt {1-{frac {3}{2}}cdot {frac {r_{0}}{r}}}}} 。引力时间膨胀已经以飞机上的原子钟实验测量出。对于在地上的钟来说,飞机上的稍微快一点。这个效应的有效程度是,连全球定位系统也要为人造卫星上的钟调准时间,这样进一步地证实了这种效应。庞德-雷布卡实验、白矮星天狼星B光谱的观测以及地球和火星登陆船维京1号之间的信号传递实验都能证明这种效应的存在。

相关

  • 转化转型(英语:transformation),又译转化,即细胞通过摄取外源遗传物质(DNA或RNA)而发生遗传学改变的过程。在转化过程中,转化的DNA片段称为转化因子。受体菌只有处在感受态时才能够摄
  • 冰原气候分布在格陵兰岛和南极大陆的冰冻高原1、全年严寒,各月温度皆在0摄氏度以下,是全球年均温最低的气候。其成因是一年中有长时期的极夜,在冰雪的覆盖之下,下垫面对太阳辐射反軇作用
  • 行为行为是指有机体(包括人类与其他动物)的动作、行动方式,以及对所处环境与其他生物体或物体的一种反应。词性为中性。在生物适应环境上,行为有很重要的意义,有助于避免受到负面的环
  • 乍得沙赫人乍得沙赫人(Sahelanthropus tchadensis),又名乍得人猿,是一种只有化石的猿,相信是生存于700万年前(7Ma)。它被称为最古老的人属祖先,是人类及黑猩猩的最近共同祖先。它是属于中新
  • 弹性在物理学中,弹性(来自希腊语ἐλαστός“可塑性”)是指物体受到外力时变形,并且当该外力解除时恢复其初始形状的能力。 固体物体受到外力时将变形。如果材料是弹性的,当这些
  • 城市美化运动城市美化运动(City Beautiful Movement)是1890年代和1900年代在北美洲达到繁荣的建筑和城市规划领域的进步主义改革运动,意图在城市进行美化,兴建宏伟的纪念碑式建筑。这一运动
  • A10A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码A10(糖尿病用药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collabor
  • 网状纤维网状纤维(英文为Reticular fibers、reticular fibres或reticulin)是一类由网状细胞分泌的网状纤维组成的结缔组织。网状纤维相互交联形成精巧的网状结构,这样的结构蛋白叫做网
  • 凹脸蝠凹脸蝠(学名:Craseonycteris thonglongyai),哺乳纲、翼手目的一种。它是凹脸蝠科凹脸蝠属下的单科种。分布于泰国西部及缅甸东南部,在沿河附近的石灰岩洞中生活。凹脸蝠是蝙蝠中
  • 凯恩斯凯恩斯(英语:Cairns)(又译开因兹),是澳大利亚昆士兰州北部的滨海城市和一个地方行政区域,于1876年开埠。该城以当时昆士兰总督威廉·惠灵顿·凯恩斯之名命名。早期是矿工前往霍金