引力时间膨胀

✍ dations ◷ 2025-11-19 03:55:07 #引力时间膨胀
引力时间膨胀(英语:Gravitational time dilation)是指在宇宙有不同势能的区域会导致时间以不同的速率度过的现象,引力导致的时空扭曲率越大,时间就过得越慢。爱因斯坦最初在自己的相对论中预测出这种现象,并其后由各种广义相对论实验中被证实。其中一种证实方法就是把两个原子钟放在不同的高度(因此来自地球的引力效应会有差别),它们在一段时间后所测到的时间会有些许差别。其差别极小极小,甚至要用到纳秒来作单位。引力时间膨胀首次由爱因斯坦于1907年提出,并是狭义相对论中参照对象的加速前进所导致的结果。在广义相对论中,它被视为是时空度规张量描述的在不同地点的固有时的差。庞德-雷布卡实验首次直接证实了这种现象的存在。引力时间膨胀会从大型天体引力场中加速的参考坐标或等效原理里明确地表现出来。更简单的来说,远离大型天体(就是储有更高势能)的钟表会走得更快,而接近大型天体的(储有较低势能)的便会走得更慢。所有加速参考坐标都会表现出这种效应,如高速赛车或太空航天飞机。旋转的物体如旋转木马和摩天轮等的引力时间膨胀,则是自旋产生的。根据套用了等效原理的广义相对论表明,所有加速的参考坐标都会产生一个引力场。根据广义相对论,惯性质量和引力质量都是同等的。并非所有引力场都是“弯形的”或是“圆形的”,其实例如赛车或太空航天飞机情况中,引力场是“平坦的”。所有重力加速度都会形成引力时间膨胀。有一条出自史瓦西度规的公式被用在计算于一个非旋转大型球对称天体附近时空的引力时间膨胀:t 0 = t f 1 − 2 G M r c 2 = t f 1 − r 0 r {displaystyle t_{0}=t_{f}{sqrt {1-{frac {2GM}{rc^{2}}}}}=t_{f}{sqrt {1-{frac {r_{0}}{r}}}}} ,其中以上公式只能应用于非旋转球对称大型天体之外,用于天体之内的公式为:t 0 = t f 1 − 2 G ( r i R ) 3 M r i c 2 = t f 1 − r i 2 r 0 R 3 {displaystyle t_{0}=t_{f}{sqrt {1-{frac {2G({frac {r_{i}}{R}})^{3}M}{r_{i}c^{2}}}}}=t_{f}{sqrt {1-r_{i}^{2}{frac {r_{0}}{R^{3}}}}}} 其中要是有观测者在球体以内,这个球体就可以被分成两部分:一个在表面的中空球体,另一个在里面的实心球体。这观测者在中空球体以内,假设并无质量。但考虑到他的引力势能,也就当作中空球体不存在。剩下的就只有里面的实心球体,而其质量为:M i = V i ρ = 4 3 π r i 3 ρ = 4 3 π r i 3 M V = 4 3 π r i 3 M 4 3 π R 3 = r i 3 R 3 M {displaystyle M_{i}=V_{i}rho ={frac {4}{3}}pi r_{i}^{3}rho ={frac {4}{3}}pi r_{i}^{3}{frac {M}{V}}={frac {4}{3}}pi r_{i}^{3}{frac {M}{{frac {4}{3}}pi R^{3}}}={frac {r_{i}^{3}}{R^{3}}}M} ,其中意思就是引力时间膨胀在非旋转大型球对称天体的表面达到最强,而在其中心达到最小。在史瓦西度规里,如果一个自由落体的轨道半径大于 3 2 ⋅ r 0 {displaystyle {frac {3}{2}}cdot r_{0}} ,其轨道能呈圆形。静止的钟的公式一列于上方,而对于一个在圆形轨道上的钟,公式就是 t 0 = t f 1 − 3 2 ⋅ r 0 r {displaystyle t_{0}=t_{f}{sqrt {1-{frac {3}{2}}cdot {frac {r_{0}}{r}}}}} 。引力时间膨胀已经以飞机上的原子钟实验测量出。对于在地上的钟来说,飞机上的稍微快一点。这个效应的有效程度是,连全球定位系统也要为人造卫星上的钟调准时间,这样进一步地证实了这种效应。庞德-雷布卡实验、白矮星天狼星B光谱的观测以及地球和火星登陆船维京1号之间的信号传递实验都能证明这种效应的存在。

相关

  • 阿米巴变形虫,拉丁文为Amoeba,中文音译为阿米巴,所以也叫做阿米巴原虫、阿米巴变形虫或阿米巴虫或称食脑虫(透过感染鼻腔而进入脑部感染的死亡率高达九成)。是一种单细胞原生动物,仅由一
  • 鸽子共有30-35种。Aplopelia Bonaparte, 1855鸽属(学名:Columba),是鸠鸽科的一属,此属的鸟类称作鸽、鸽子、粉鸟,包括各种中型和大型的鸽子,其中有我们今天常见的鸽子,即原鸽。鸽属中包
  • 雅利安人种雅利安人种或译为亚利安人种,是在十九世纪晚期至二十世纪中期划分出的一个人种,属高加索人种,该人种身材较高大,淡色皮肤,面长多毛,鼻骨高窄,瞳孔颜色浅,虹膜多成浅灰至蓝色,发色多变
  • 佛蒙特佛蒙特州(英语:State of Vermont,i/vərˈmɒnt/))是美国第14个州,以其美丽的景色、奶制品、枫糖浆和激进的政治而著称。佛蒙特总共拥有14个县。这14个县,辖下有255个政治单位或地
  • 方斯华·贾克柏弗朗索瓦·雅各布(法语:François Jacob,1920年6月17日-2013年4月19日)是一位犹太裔法国生物学家,他与雅克·莫诺发现了酶在原核生物转录作用调控中的角色,也就是后来所知的乳糖操
  • 英国国防部国防部(英语:Ministry of Defence,缩写作 MoD)是负责履行英国政府国家防务政策的政府部门,也是英国军队的上级业务单位。英国国防部申明的主要目标是保卫英国及其利益,并加强国际
  • 柏林-泰格尔机场柏林-泰格尔“奥托·利林塔尔”机场(德语:Flughafen Berlin-Tegel „Otto Lilienthal“,IATA代码:TXL;ICAO代码:EDDT),简称柏林-泰格尔机场,是德国首都柏林的主要国际机场,以该国航空
  • 冠醚冠醚是一种杂环有机化合物,包含有多个醚基团。最常见的冠醚就是乙撑氧的低聚物,其中重复的单位是乙烯氧基(-CH2CH2O- 可看作是环氧乙烷断裂碳氧键后的剩余基团)。这一系列中最重
  • 曾母暗沙曾母暗沙(英语:James Shoal,詹姆斯暗沙;马来语:Beting Serupai)亦称詹姆沙,是一座位于南海、终年不露出水面的海底暗沙,被视为南沙群岛的一部分,马来西亚、中华民国及中华人民共和国
  • 反比在数学中,比例是两个非零数量 y {\displaystyle y} 与 x {\displaystyle x} 之间的