引力时间膨胀

✍ dations ◷ 2025-04-02 16:51:36 #引力时间膨胀
引力时间膨胀(英语:Gravitational time dilation)是指在宇宙有不同势能的区域会导致时间以不同的速率度过的现象,引力导致的时空扭曲率越大,时间就过得越慢。爱因斯坦最初在自己的相对论中预测出这种现象,并其后由各种广义相对论实验中被证实。其中一种证实方法就是把两个原子钟放在不同的高度(因此来自地球的引力效应会有差别),它们在一段时间后所测到的时间会有些许差别。其差别极小极小,甚至要用到纳秒来作单位。引力时间膨胀首次由爱因斯坦于1907年提出,并是狭义相对论中参照对象的加速前进所导致的结果。在广义相对论中,它被视为是时空度规张量描述的在不同地点的固有时的差。庞德-雷布卡实验首次直接证实了这种现象的存在。引力时间膨胀会从大型天体引力场中加速的参考坐标或等效原理里明确地表现出来。更简单的来说,远离大型天体(就是储有更高势能)的钟表会走得更快,而接近大型天体的(储有较低势能)的便会走得更慢。所有加速参考坐标都会表现出这种效应,如高速赛车或太空航天飞机。旋转的物体如旋转木马和摩天轮等的引力时间膨胀,则是自旋产生的。根据套用了等效原理的广义相对论表明,所有加速的参考坐标都会产生一个引力场。根据广义相对论,惯性质量和引力质量都是同等的。并非所有引力场都是“弯形的”或是“圆形的”,其实例如赛车或太空航天飞机情况中,引力场是“平坦的”。所有重力加速度都会形成引力时间膨胀。有一条出自史瓦西度规的公式被用在计算于一个非旋转大型球对称天体附近时空的引力时间膨胀:t 0 = t f 1 − 2 G M r c 2 = t f 1 − r 0 r {displaystyle t_{0}=t_{f}{sqrt {1-{frac {2GM}{rc^{2}}}}}=t_{f}{sqrt {1-{frac {r_{0}}{r}}}}} ,其中以上公式只能应用于非旋转球对称大型天体之外,用于天体之内的公式为:t 0 = t f 1 − 2 G ( r i R ) 3 M r i c 2 = t f 1 − r i 2 r 0 R 3 {displaystyle t_{0}=t_{f}{sqrt {1-{frac {2G({frac {r_{i}}{R}})^{3}M}{r_{i}c^{2}}}}}=t_{f}{sqrt {1-r_{i}^{2}{frac {r_{0}}{R^{3}}}}}} 其中要是有观测者在球体以内,这个球体就可以被分成两部分:一个在表面的中空球体,另一个在里面的实心球体。这观测者在中空球体以内,假设并无质量。但考虑到他的引力势能,也就当作中空球体不存在。剩下的就只有里面的实心球体,而其质量为:M i = V i ρ = 4 3 π r i 3 ρ = 4 3 π r i 3 M V = 4 3 π r i 3 M 4 3 π R 3 = r i 3 R 3 M {displaystyle M_{i}=V_{i}rho ={frac {4}{3}}pi r_{i}^{3}rho ={frac {4}{3}}pi r_{i}^{3}{frac {M}{V}}={frac {4}{3}}pi r_{i}^{3}{frac {M}{{frac {4}{3}}pi R^{3}}}={frac {r_{i}^{3}}{R^{3}}}M} ,其中意思就是引力时间膨胀在非旋转大型球对称天体的表面达到最强,而在其中心达到最小。在史瓦西度规里,如果一个自由落体的轨道半径大于 3 2 ⋅ r 0 {displaystyle {frac {3}{2}}cdot r_{0}} ,其轨道能呈圆形。静止的钟的公式一列于上方,而对于一个在圆形轨道上的钟,公式就是 t 0 = t f 1 − 3 2 ⋅ r 0 r {displaystyle t_{0}=t_{f}{sqrt {1-{frac {3}{2}}cdot {frac {r_{0}}{r}}}}} 。引力时间膨胀已经以飞机上的原子钟实验测量出。对于在地上的钟来说,飞机上的稍微快一点。这个效应的有效程度是,连全球定位系统也要为人造卫星上的钟调准时间,这样进一步地证实了这种效应。庞德-雷布卡实验、白矮星天狼星B光谱的观测以及地球和火星登陆船维京1号之间的信号传递实验都能证明这种效应的存在。

相关

  • 进行性脊肌萎缩症进行性肌萎缩(Progressive Muscular Atrophy,P.M.A)是一种具有进行性、对称性、以近端为主的弛缓性瘫痪和肌肉萎缩为特征的遗传性下运动神经元疾病。确切原因仍不清楚。有人记
  • 随机对照试验随机对照试验(英语:randomized controlled trial,RCT)是一种对医疗卫生服务中的某种疗法或药物的效果进行检测的手段,特别常用于医学、药学、护理学研究中,在司法、教育、社会科学
  • 联氨联氨、联胺、二氮烷或.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{fo
  • 心血管病心血管疾病(英语:cardiovascular disease,簡稱CVD)指的是关于心脏或血管的疾病,又称为循环系统疾病、循环系统疾病。常见的心血管疾病包括冠状动脉症候群、中风、高血压性心脏病(
  • 拍米拍米(英式英语:Petametre,美式英语:Petameter,符号Pm)是一个长度单位。1 拍米=1015米。米(m) · 尧米(Ym) · 泽米(Zm) · 艾米(Em) · 拍米(Pm) · 太米(Tm) · 吉米(Gm) · 兆米(Mm) · 千米(km)
  • 格拉斯考克县坐标:33°14′32″N 82°37′36″W / 33.2422994°N 82.6267345°W / 33.2422994; -82.6267345格拉斯卡克县(英语:Glascock County, Georgia)是美国乔治亚州东部的一个县。面积3
  • 普罗可布咖啡馆普罗可布咖啡馆(Café Procope)位于巴黎第六区的老喜剧院街(rue de l'Ancienne Comédie),被称为巴黎最古老的连续开业的餐馆。它在1686年开业 由意大利西西里人Francesco Procop
  • 国立高雄应用科技大学国立高雄应用科技大学(英语:National Kaohsiung University of Applied Sciences),简称KUAS、高应、高应大、高应科大,前身为1963年所创立的三大工专台湾省立高雄工业专科学校。2
  • 板桥区坐标:25°00′35″N 121°27′33″E / 25.0096703°N 121.4590989°E / 25.0096703; 121.4590989板桥区(台湾话: Pang-kiô-khu;客家话: Piông-khièu-khî;旧称枋桥、摆接)为台湾
  • 西北地区西北地区(英语:Northwest Territories,法语:les Territoires du Nord-Ouest,因纽特语:ᓄᓇᑦᓯᐊᖅ)或西北领地,简称NWT,是加拿大一级行政区里面的三个“地区/领地”(Territory)之一,面