引力时间膨胀

✍ dations ◷ 2025-11-29 06:10:46 #引力时间膨胀
引力时间膨胀(英语:Gravitational time dilation)是指在宇宙有不同势能的区域会导致时间以不同的速率度过的现象,引力导致的时空扭曲率越大,时间就过得越慢。爱因斯坦最初在自己的相对论中预测出这种现象,并其后由各种广义相对论实验中被证实。其中一种证实方法就是把两个原子钟放在不同的高度(因此来自地球的引力效应会有差别),它们在一段时间后所测到的时间会有些许差别。其差别极小极小,甚至要用到纳秒来作单位。引力时间膨胀首次由爱因斯坦于1907年提出,并是狭义相对论中参照对象的加速前进所导致的结果。在广义相对论中,它被视为是时空度规张量描述的在不同地点的固有时的差。庞德-雷布卡实验首次直接证实了这种现象的存在。引力时间膨胀会从大型天体引力场中加速的参考坐标或等效原理里明确地表现出来。更简单的来说,远离大型天体(就是储有更高势能)的钟表会走得更快,而接近大型天体的(储有较低势能)的便会走得更慢。所有加速参考坐标都会表现出这种效应,如高速赛车或太空航天飞机。旋转的物体如旋转木马和摩天轮等的引力时间膨胀,则是自旋产生的。根据套用了等效原理的广义相对论表明,所有加速的参考坐标都会产生一个引力场。根据广义相对论,惯性质量和引力质量都是同等的。并非所有引力场都是“弯形的”或是“圆形的”,其实例如赛车或太空航天飞机情况中,引力场是“平坦的”。所有重力加速度都会形成引力时间膨胀。有一条出自史瓦西度规的公式被用在计算于一个非旋转大型球对称天体附近时空的引力时间膨胀:t 0 = t f 1 − 2 G M r c 2 = t f 1 − r 0 r {displaystyle t_{0}=t_{f}{sqrt {1-{frac {2GM}{rc^{2}}}}}=t_{f}{sqrt {1-{frac {r_{0}}{r}}}}} ,其中以上公式只能应用于非旋转球对称大型天体之外,用于天体之内的公式为:t 0 = t f 1 − 2 G ( r i R ) 3 M r i c 2 = t f 1 − r i 2 r 0 R 3 {displaystyle t_{0}=t_{f}{sqrt {1-{frac {2G({frac {r_{i}}{R}})^{3}M}{r_{i}c^{2}}}}}=t_{f}{sqrt {1-r_{i}^{2}{frac {r_{0}}{R^{3}}}}}} 其中要是有观测者在球体以内,这个球体就可以被分成两部分:一个在表面的中空球体,另一个在里面的实心球体。这观测者在中空球体以内,假设并无质量。但考虑到他的引力势能,也就当作中空球体不存在。剩下的就只有里面的实心球体,而其质量为:M i = V i ρ = 4 3 π r i 3 ρ = 4 3 π r i 3 M V = 4 3 π r i 3 M 4 3 π R 3 = r i 3 R 3 M {displaystyle M_{i}=V_{i}rho ={frac {4}{3}}pi r_{i}^{3}rho ={frac {4}{3}}pi r_{i}^{3}{frac {M}{V}}={frac {4}{3}}pi r_{i}^{3}{frac {M}{{frac {4}{3}}pi R^{3}}}={frac {r_{i}^{3}}{R^{3}}}M} ,其中意思就是引力时间膨胀在非旋转大型球对称天体的表面达到最强,而在其中心达到最小。在史瓦西度规里,如果一个自由落体的轨道半径大于 3 2 ⋅ r 0 {displaystyle {frac {3}{2}}cdot r_{0}} ,其轨道能呈圆形。静止的钟的公式一列于上方,而对于一个在圆形轨道上的钟,公式就是 t 0 = t f 1 − 3 2 ⋅ r 0 r {displaystyle t_{0}=t_{f}{sqrt {1-{frac {3}{2}}cdot {frac {r_{0}}{r}}}}} 。引力时间膨胀已经以飞机上的原子钟实验测量出。对于在地上的钟来说,飞机上的稍微快一点。这个效应的有效程度是,连全球定位系统也要为人造卫星上的钟调准时间,这样进一步地证实了这种效应。庞德-雷布卡实验、白矮星天狼星B光谱的观测以及地球和火星登陆船维京1号之间的信号传递实验都能证明这种效应的存在。

相关

  • 化学生物学化学生物学(英语:Chemical Biology)是哈佛大学的斯图亚特·L·施莱伯等人所提倡,利用分子生物学的手法,搭配有机化学的方式,探讨细胞内核酸或是蛋白质等生物体内分子的功能或是反
  • 无宇宙论无宇宙论(英语:Acosmism)与泛神论相反,否认宇宙的实在,认为它最终只是错觉,只有无限未显(英语:unmanifest)的“绝对”是真实的。 东、西方哲学中都能够找到无宇宙论的概念。“摩耶
  • 代谢途径代谢途径(英语:metabolic pathway)在生物化学中,是一连串在细胞内发生的化学反应,并由酶所催化,形成使用或储存的代谢物,或引发另一个代谢途径(称为“流量控制反应”)。多种途径都是
  • 作格作格(英语:Ergative case,缩写: .mw-parser-output .smallcaps-all{font-variant:small-caps;text-transform:lowercase}.mw-parser-output .smallcaps-all *{font-variant:norm
  • 电子传递链电子传递链又称呼吸链,是氧化磷酸化的一部分,位于原核生物细胞膜或者真核生物的线粒体内膜上,叶绿体在类囊体膜上所进行的进行光合磷酸化过程,高能电子在膜上一系列蛋白传送的过
  • 木酮糖-5-磷酸D-木酮糖-5-磷酸(英语:D-Xylulose 5-phosphate)是一个磷酸戊糖途径中的中间代谢产物,由酮糖核酮糖-5-磷酸而来。最近的研究表明,此物质在基因表达中也有重要作用,主要与转录因子Ch
  • UpToDateUpToDate, Inc.(bip)是威科集团的 Wolters Kluwer Health部门下的公司,其主要产品是UpToDate,是可以提供照护点(英语:point-of-care)医疗资讯的软件系统。也在中国大陆推出了UpToDa
  • 录影带录像带或录影带(英语:videotape),是磁带的一种,主要用来录制、播放活动影像及音乐等。一般以录放影机来录制和播放。它是一种顺序式的线性(linear)影像储存方式。录像带的保养,最怕
  • 高科技产业卫星导航系统高科技,或称高技术、高新,指的是最先进的尖端科技。对于高科技来说,并没有什么特别的分类法,到了1960年代,商家为了促销,把只要不是低科技(英语:Low technology)的产品都
  • 星形胶质细胞星形胶质细胞,也称星状细胞(astrocyte、AS),为神经胶质细胞的一种。星形胶质细胞在大脑中的比例尚不明确。有研究发现,星形胶质细胞的比例因区域而异,占所有神经胶质细胞的20%至40%