向量 · 向量空间 · 行列式 · 矩阵
标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积
矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·
线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·
在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。
“线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。
设中任何两个向量中任何标量和可被看作在不同域上的向量空间。那么必须指定哪些基础域要被用在“线性”的定义中。如果和被看作前面的域上的空间,我们谈论的就是-线性映射。例如,复数的共轭是到数域的线性映射有一个特别的名字,叫做“线性泛函”。线性泛函分析就是将空间维度增加到无穷维(包括不可数无穷维)的高等线性代数。线性泛函分析是泛函分析最成熟的分支,但泛函分析最早研究的是有关向量空间上的实值函数(它们一般是非线性映射)的变分学问题。
从定义立即得出和是有限维的,并且在这些空间中有选择好的基,则从到的所有线性映射可以被表示为矩阵。反过来说,矩阵生成线性映射的例子:如果是实数的的一个基。则在中所有向量的基。则可以表示每个对在中任何向量的值。如果我放置是基础域的一个元素,则定义自 ()() = (())的映射也是线性的。
所以从的自同态;所有这种自同态的集合的自同态也刚好是同构则称之为自同构。两个自同构的复合再次是自同构,所以的所有的自同构的集合形成一个群,的自同构群可表为之维度中元素的所有的自同态群同构于带有在中元素的所有的子空间,而的子空间。下面的叫做秩-零化度定理的维度公式经常是有用的:
和是有限维的,基已经选择好并且被表示为矩阵,则的秩和零化度分别等于矩阵的秩和零化度。
多重线性映射是线性映射最重要的推广,它也是格拉斯曼代数和张量分析的数学基础。其特例为双线性映射。