电流密度

✍ dations ◷ 2025-04-03 09:59:53 #电流密度
在电磁学里,电流密度(current density)是电荷流动的密度,即每单位截面面积电流量。电流密度是一种矢量,一般以符号 J {displaystyle mathbf {J} } 表示。采用国际单位制,电流密度的单位是安培/米2(ampere/meter2,A/m2)。电流密度 J 可以简单地定义为通过单位面积 A(国际单位:m2)的电流 I(国际单位:A)。它的量值由极限给出:当电流密度作为矢量 J 时,在曲面 S 上进行曲面积分后,再对持续时间 t1 到 t2 积分,得到 (t2 − t1) 这段时间流过该面的电荷总量:计算通量所用到的面积可实可虚,可平可曲,可为截面也可为表面。例如,对于通过导体的载流子来说,这里遇到的面积是导体的截面。对于电力系统和电子系统的设计而言,电流密度是很重要的。电路的性能与电流量紧密相关,而电流密度又是由导体的物体尺寸决定。例如,随着集成电路的尺寸越变越小,虽然较小的元件需要的电流也较小,为了要达到芯片内含的元件数量密度增高的目标,电流密度会趋向于增高。更详尽细节,请参阅摩尔定律。在高频频域,由于趋肤效应,传导区域会更加局限于表面附近,因而促使电流密度增高。电流密度过高会产生不理想后果。大多数电导体的电阻是有限的正值,会以热能的形式消散功率。为了要避免电导体因过热而被熔化或发生燃烧,并且防止绝缘材料遭到损坏,电流密度必须维持在过高值以下。假若电流密度过高,材料与材料之间的互连部分会开始移动,这现象称为电迁移(electromigration)。在超导体里,过高的电流密度会产生很强的磁场,这会使得超导体自发地丧失超导性质。对于电流密度所做的分析和观察,可以用来探测固体内在的物理性质,包括金属、半导体、绝缘体等等。在这科学领域,材料学家已经研究发展出一套非常详尽的理论形式论,来解释很多机要的实验观察。安培力定律描述电流密度与磁场之间的关系。电流密度是安培力定律的一个重要参数,大自然有很多种载有电荷的粒子,称为“带电粒子”,例如,导电体内可移动的电子、电解液内的离子、等离子体内的电子和离子、强子内的夸克。这些带电粒子的移动,形成了电流。电荷流动的分布可以由电流密度来描述:其中, J ( r , t ) {displaystyle mathbf {J} (mathbf {r} ,t)} 是在位置 r {displaystyle mathbf {r} } 、在时间 t {displaystyle t} 的电流密度矢量, q {displaystyle q} 是带电粒子的电荷量, n ( r , t ) {displaystyle n(mathbf {r} ,t)} 是带电粒子密度,是单位体积的带电粒子数量, ρ ( r , t ) {displaystyle rho (mathbf {r} ,t)} 是电荷密度, v d ( r , t ) {displaystyle mathbf {v} _{d}(mathbf {r} ,t)} 是带电粒子的平均漂移速度。电流密度时常可以近似为与电场成正比,以方程表达为其中, E {displaystyle mathbf {E} } 是电场, J {displaystyle mathbf {J} } 是电流密度, σ {displaystyle sigma } 是电导率,是电阻率的倒数。电阻公式阐明,一个均匀截面的物体的电阻与电阻率和导体长度成正比,与截面面积成反比。以方程表达,其中, R {displaystyle R} 是电阻, ℓ {displaystyle ell } 是物体长度, A {displaystyle A} 是物体的截面面积, ρ {displaystyle rho } 是电阻率。根据欧姆定律,电压 V {displaystyle V} 等于电流 I {displaystyle I} 乘以电阻:所以,注意到在物体内,电场与电压的关系为其中, z ^ {displaystyle {hat {z}}} 是电流方向。所以,电导率为电阻率的倒数, σ = 1 / ρ {displaystyle sigma =1/rho } 。电流密度与电场的关系为采用更基础性的方法来计算电流密度。这方法建立于方程其中, r ′ {displaystyle mathbf {r} '} 和 t ′ {displaystyle t'} 分别是位置积分变数和时间积分变数。这方式显示出电导率 σ {displaystyle sigma } 在时间方面的滞后响应,和在空间方面的非局域响应属性。原则上,通过微观量子分析,才能推导出来电导率函数。例如,对于足够弱小的电场,可以从描述物质的电导性质的线性响应函数(linear response function)推导。经过一番沉思,可以了解,这电导率和其伴随的电流密度反映出,在时间方面和在空间方面,电荷传输于介质的基本机制。假设每当 Δ t < 0 {displaystyle Delta t<0} 时, ε r ( Δ t ) = 0 {displaystyle varepsilon _{r}(Delta t)=0} ,则这积分的上限可以延伸至无穷大:做一个对于时间与空间的傅里叶变换,根据折积定理,可以得到其中, σ ( k , ω ) {displaystyle sigma (mathbf {k} ,omega )} 是参数为波矢 k {displaystyle mathbf {k} } 和角频率 ω {displaystyle omega } 的电导率复函数。许多物质的电导率是张量,电流可能不会与施加的电场同方向。例如,晶体物质这是这样的物质。磁场的施加也可能会改变电导行为。穿过曲面 S {displaystyle mathbb {S} } 的电流 I {displaystyle I} 可以用面积分计算为其中, J {displaystyle mathbf {J} } 是电流密度, d a {displaystyle mathrm {d} mathbf {a} } 是微小面元素。由于电荷守恒,从某设定体积流出的电流的净流量,等于在这体积内部的电荷量的净变率。以方程表达,其中, ρ {displaystyle rho } 是电荷密度, d r 3 {displaystyle mathrm {d} r^{3}} 是微小体元素, V {displaystyle mathbb {V} } 是闭曲面 S {displaystyle mathbb {S} } 所包围的体积。这方程左边的面积分表示电流从闭曲面 S {displaystyle mathbb {S} } 所包围的体积 V {displaystyle mathbb {V} } 流出来,中间和右边的体积分的负号表示,随着时间的前进,体积内部的电荷量逐渐减少。根据散度定理,所以,注意到对于任意体积 V {displaystyle mathbb {V} } ,上述方程都成立。所以,两个被积式恒等:称这方程为连续方程。

相关

  • 黄热病黄热病(法语:la fièvre jaune ; 英语:Yellow Fever, Yellow Jack, Yellow Plague,俗称黄杰克、黑呕,有时又称美洲瘟疫)是一种急性病毒病。症状通常包括发烧、冷颤、食欲下降、恶
  • 果子狸Gulo larvara Hamilton-Smith, 1827果子狸(学名:Paguma larvata)又名花面狸、白鼻心、果子猫(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemF
  • 1s2 2s12, 1蒸气压第一:520.2 kJ·mol−1 第二:7298.1 kJ·mol−1 第三:11815.0 kJ·mol主条目:锂的同位素锂(希腊语:λίθος,拉丁:LITHOS,直译"石头")是一种化学元素。其中文
  • 椭球体椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状
  • 廊酒廊酒(法语:Bénédictine)是由法国人Alexandre Le Grand于19世纪始创的一种草本利口酒。制造商除了生产廊酒外,同时生产一种称之为"B & B"(Bénédictine and Brandy)的酒精饮料,通
  • 化学发光化学发光,是化学反应过程中释放出来的能量激发发光物质所产生的冷发光现象。以反应物A和B为例,如果存在处于激发态的反应中间体◊,那么:再例如,如果是鲁米诺,而是过氧化氢,那么在适
  • 叁键三键(英语:Triple bond),是有机化学中原子与原子之间被3对价电子连结的共价键的称号。在有机化学中,所有的炔烃化合物都具有三键,同时,也有许多其他例子
  • 陈宜张陈宜张(1927年9月28日-),浙江余姚人,中国著名神经生理学家,中国科学院院士,第二军医大学神经科学研究所所长,原浙江大学医学院院长。1952年,毕业于浙江大学医学院,是浙江大学医学院的
  • 李德仁中国科学院院士(地学部,1991年)中国工程院院士(信息与电子工程学部,1994年)李德仁(1939年12月31日-),中国摄影测量与遥感学家。出生于江苏泰县。籍贯江苏镇江丹徒。1963年毕业于武汉测
  • 裤子裤又称裤子、也作袴,是人类穿着在腰部以下,分别穿套两腿的一种衣物的总称。依其型式大致可分为长裤、短裤,在服装设计上也可区分出男性的裤子和女装的裤子,依工作性质不同,也可分