电流密度

✍ dations ◷ 2025-09-19 10:33:30 #电流密度
在电磁学里,电流密度(current density)是电荷流动的密度,即每单位截面面积电流量。电流密度是一种矢量,一般以符号 J {displaystyle mathbf {J} } 表示。采用国际单位制,电流密度的单位是安培/米2(ampere/meter2,A/m2)。电流密度 J 可以简单地定义为通过单位面积 A(国际单位:m2)的电流 I(国际单位:A)。它的量值由极限给出:当电流密度作为矢量 J 时,在曲面 S 上进行曲面积分后,再对持续时间 t1 到 t2 积分,得到 (t2 − t1) 这段时间流过该面的电荷总量:计算通量所用到的面积可实可虚,可平可曲,可为截面也可为表面。例如,对于通过导体的载流子来说,这里遇到的面积是导体的截面。对于电力系统和电子系统的设计而言,电流密度是很重要的。电路的性能与电流量紧密相关,而电流密度又是由导体的物体尺寸决定。例如,随着集成电路的尺寸越变越小,虽然较小的元件需要的电流也较小,为了要达到芯片内含的元件数量密度增高的目标,电流密度会趋向于增高。更详尽细节,请参阅摩尔定律。在高频频域,由于趋肤效应,传导区域会更加局限于表面附近,因而促使电流密度增高。电流密度过高会产生不理想后果。大多数电导体的电阻是有限的正值,会以热能的形式消散功率。为了要避免电导体因过热而被熔化或发生燃烧,并且防止绝缘材料遭到损坏,电流密度必须维持在过高值以下。假若电流密度过高,材料与材料之间的互连部分会开始移动,这现象称为电迁移(electromigration)。在超导体里,过高的电流密度会产生很强的磁场,这会使得超导体自发地丧失超导性质。对于电流密度所做的分析和观察,可以用来探测固体内在的物理性质,包括金属、半导体、绝缘体等等。在这科学领域,材料学家已经研究发展出一套非常详尽的理论形式论,来解释很多机要的实验观察。安培力定律描述电流密度与磁场之间的关系。电流密度是安培力定律的一个重要参数,大自然有很多种载有电荷的粒子,称为“带电粒子”,例如,导电体内可移动的电子、电解液内的离子、等离子体内的电子和离子、强子内的夸克。这些带电粒子的移动,形成了电流。电荷流动的分布可以由电流密度来描述:其中, J ( r , t ) {displaystyle mathbf {J} (mathbf {r} ,t)} 是在位置 r {displaystyle mathbf {r} } 、在时间 t {displaystyle t} 的电流密度矢量, q {displaystyle q} 是带电粒子的电荷量, n ( r , t ) {displaystyle n(mathbf {r} ,t)} 是带电粒子密度,是单位体积的带电粒子数量, ρ ( r , t ) {displaystyle rho (mathbf {r} ,t)} 是电荷密度, v d ( r , t ) {displaystyle mathbf {v} _{d}(mathbf {r} ,t)} 是带电粒子的平均漂移速度。电流密度时常可以近似为与电场成正比,以方程表达为其中, E {displaystyle mathbf {E} } 是电场, J {displaystyle mathbf {J} } 是电流密度, σ {displaystyle sigma } 是电导率,是电阻率的倒数。电阻公式阐明,一个均匀截面的物体的电阻与电阻率和导体长度成正比,与截面面积成反比。以方程表达,其中, R {displaystyle R} 是电阻, ℓ {displaystyle ell } 是物体长度, A {displaystyle A} 是物体的截面面积, ρ {displaystyle rho } 是电阻率。根据欧姆定律,电压 V {displaystyle V} 等于电流 I {displaystyle I} 乘以电阻:所以,注意到在物体内,电场与电压的关系为其中, z ^ {displaystyle {hat {z}}} 是电流方向。所以,电导率为电阻率的倒数, σ = 1 / ρ {displaystyle sigma =1/rho } 。电流密度与电场的关系为采用更基础性的方法来计算电流密度。这方法建立于方程其中, r ′ {displaystyle mathbf {r} '} 和 t ′ {displaystyle t'} 分别是位置积分变数和时间积分变数。这方式显示出电导率 σ {displaystyle sigma } 在时间方面的滞后响应,和在空间方面的非局域响应属性。原则上,通过微观量子分析,才能推导出来电导率函数。例如,对于足够弱小的电场,可以从描述物质的电导性质的线性响应函数(linear response function)推导。经过一番沉思,可以了解,这电导率和其伴随的电流密度反映出,在时间方面和在空间方面,电荷传输于介质的基本机制。假设每当 Δ t < 0 {displaystyle Delta t<0} 时, ε r ( Δ t ) = 0 {displaystyle varepsilon _{r}(Delta t)=0} ,则这积分的上限可以延伸至无穷大:做一个对于时间与空间的傅里叶变换,根据折积定理,可以得到其中, σ ( k , ω ) {displaystyle sigma (mathbf {k} ,omega )} 是参数为波矢 k {displaystyle mathbf {k} } 和角频率 ω {displaystyle omega } 的电导率复函数。许多物质的电导率是张量,电流可能不会与施加的电场同方向。例如,晶体物质这是这样的物质。磁场的施加也可能会改变电导行为。穿过曲面 S {displaystyle mathbb {S} } 的电流 I {displaystyle I} 可以用面积分计算为其中, J {displaystyle mathbf {J} } 是电流密度, d a {displaystyle mathrm {d} mathbf {a} } 是微小面元素。由于电荷守恒,从某设定体积流出的电流的净流量,等于在这体积内部的电荷量的净变率。以方程表达,其中, ρ {displaystyle rho } 是电荷密度, d r 3 {displaystyle mathrm {d} r^{3}} 是微小体元素, V {displaystyle mathbb {V} } 是闭曲面 S {displaystyle mathbb {S} } 所包围的体积。这方程左边的面积分表示电流从闭曲面 S {displaystyle mathbb {S} } 所包围的体积 V {displaystyle mathbb {V} } 流出来,中间和右边的体积分的负号表示,随着时间的前进,体积内部的电荷量逐渐减少。根据散度定理,所以,注意到对于任意体积 V {displaystyle mathbb {V} } ,上述方程都成立。所以,两个被积式恒等:称这方程为连续方程。

相关

  • 亚里士多德亚里士多德(希腊语:Αριστοτέλης,Aristotélēs,前384年-前322年3月7日),古希腊哲学家,柏拉图的学生、亚历山大大帝的老师。他的著作牵涉许多学科,包括了物理学、形而上学
  • IVAbr /14固体、 液体、 气体碳族元素是指元素周期表上第14族(ⅣA族)的元素,位于硼族元素和氮族元素之间。碳族元素包含碳(C)、硅(Si)、锗(Ge)、锡(Sn)、铅(Pb)、
  • 灌肠医学的灌肠(enema)是指通过肛门引液体灌洗直肠的操作。有治疗疾病(例如便秘)、另类保健疗法、减重、或者非法虐待(例如性虐待)的用途。使用的器具及液体必须为医用,否则很容易引发
  • 臀部臀部,又称尻、腚,俗称屁股、屎窟、箩柚(碌柚谐音)、箩噼、噼噼,台语亦作尻川(kha-tshng),是猿类和人类盆骨部分后方的浑圆部位。亦是人类用来承受坐力的部位。臀部由臀大肌和臀中肌
  • 论证在逻辑中,论证是基于叫做前提的一组断言,证明叫做结论的断言的真实性的尝试。演绎和归纳推理的证明过程形成了论证,并假定了某种交流方式,它可以是书写的文本、演讲或交谈。一般
  • 非线性在物理科学中,如果描述某个系统的方程其输入(自变数)与输出(应变数)不成正比,则称为非线性系统。由于自然界中大部分的系统本质上都是非线性的,因此许多工程师、物理学家、数学家和
  • 光源光通常指的是人类眼睛可以见的电磁波(可见光),视知觉就是对于可见光的知觉。可见光只是电磁波谱上的某一段频谱,一般是定义为波长介于400至700奈(纳)米(nm)之间的电磁波,也就是波长比
  • 南卡罗来纳南卡罗来纳州(英语:State of South Carolina),简称南卡州,是美国东南方州份中的一州,曾是美国早期13州联盟里的南卡罗来纳省(Province of South Carolina),在反抗英制高税的美国独立
  • 詹姆士·A·约克詹姆斯·阿兰·约克(英语:James Alan Yorke,1941年8月3日-),美国数学家和理论物理学家,马里兰大学学院市分校数学和物理和数学系前任系主任。他和本华·曼德博是2003年日本国际奖科
  • 龚岳亭龚岳亭(1928年4月5日-2014年12月27日),上海人,中国生物化学家。1949年冬毕业于上海圣约翰大学化学系。中国科学院上海生物化学研究所研究员,兼任上海计划生育科学研究所所长、名誉