电流密度

✍ dations ◷ 2025-04-25 05:04:53 #电流密度
在电磁学里,电流密度(current density)是电荷流动的密度,即每单位截面面积电流量。电流密度是一种矢量,一般以符号 J {displaystyle mathbf {J} } 表示。采用国际单位制,电流密度的单位是安培/米2(ampere/meter2,A/m2)。电流密度 J 可以简单地定义为通过单位面积 A(国际单位:m2)的电流 I(国际单位:A)。它的量值由极限给出:当电流密度作为矢量 J 时,在曲面 S 上进行曲面积分后,再对持续时间 t1 到 t2 积分,得到 (t2 − t1) 这段时间流过该面的电荷总量:计算通量所用到的面积可实可虚,可平可曲,可为截面也可为表面。例如,对于通过导体的载流子来说,这里遇到的面积是导体的截面。对于电力系统和电子系统的设计而言,电流密度是很重要的。电路的性能与电流量紧密相关,而电流密度又是由导体的物体尺寸决定。例如,随着集成电路的尺寸越变越小,虽然较小的元件需要的电流也较小,为了要达到芯片内含的元件数量密度增高的目标,电流密度会趋向于增高。更详尽细节,请参阅摩尔定律。在高频频域,由于趋肤效应,传导区域会更加局限于表面附近,因而促使电流密度增高。电流密度过高会产生不理想后果。大多数电导体的电阻是有限的正值,会以热能的形式消散功率。为了要避免电导体因过热而被熔化或发生燃烧,并且防止绝缘材料遭到损坏,电流密度必须维持在过高值以下。假若电流密度过高,材料与材料之间的互连部分会开始移动,这现象称为电迁移(electromigration)。在超导体里,过高的电流密度会产生很强的磁场,这会使得超导体自发地丧失超导性质。对于电流密度所做的分析和观察,可以用来探测固体内在的物理性质,包括金属、半导体、绝缘体等等。在这科学领域,材料学家已经研究发展出一套非常详尽的理论形式论,来解释很多机要的实验观察。安培力定律描述电流密度与磁场之间的关系。电流密度是安培力定律的一个重要参数,大自然有很多种载有电荷的粒子,称为“带电粒子”,例如,导电体内可移动的电子、电解液内的离子、等离子体内的电子和离子、强子内的夸克。这些带电粒子的移动,形成了电流。电荷流动的分布可以由电流密度来描述:其中, J ( r , t ) {displaystyle mathbf {J} (mathbf {r} ,t)} 是在位置 r {displaystyle mathbf {r} } 、在时间 t {displaystyle t} 的电流密度矢量, q {displaystyle q} 是带电粒子的电荷量, n ( r , t ) {displaystyle n(mathbf {r} ,t)} 是带电粒子密度,是单位体积的带电粒子数量, ρ ( r , t ) {displaystyle rho (mathbf {r} ,t)} 是电荷密度, v d ( r , t ) {displaystyle mathbf {v} _{d}(mathbf {r} ,t)} 是带电粒子的平均漂移速度。电流密度时常可以近似为与电场成正比,以方程表达为其中, E {displaystyle mathbf {E} } 是电场, J {displaystyle mathbf {J} } 是电流密度, σ {displaystyle sigma } 是电导率,是电阻率的倒数。电阻公式阐明,一个均匀截面的物体的电阻与电阻率和导体长度成正比,与截面面积成反比。以方程表达,其中, R {displaystyle R} 是电阻, ℓ {displaystyle ell } 是物体长度, A {displaystyle A} 是物体的截面面积, ρ {displaystyle rho } 是电阻率。根据欧姆定律,电压 V {displaystyle V} 等于电流 I {displaystyle I} 乘以电阻:所以,注意到在物体内,电场与电压的关系为其中, z ^ {displaystyle {hat {z}}} 是电流方向。所以,电导率为电阻率的倒数, σ = 1 / ρ {displaystyle sigma =1/rho } 。电流密度与电场的关系为采用更基础性的方法来计算电流密度。这方法建立于方程其中, r ′ {displaystyle mathbf {r} '} 和 t ′ {displaystyle t'} 分别是位置积分变数和时间积分变数。这方式显示出电导率 σ {displaystyle sigma } 在时间方面的滞后响应,和在空间方面的非局域响应属性。原则上,通过微观量子分析,才能推导出来电导率函数。例如,对于足够弱小的电场,可以从描述物质的电导性质的线性响应函数(linear response function)推导。经过一番沉思,可以了解,这电导率和其伴随的电流密度反映出,在时间方面和在空间方面,电荷传输于介质的基本机制。假设每当 Δ t < 0 {displaystyle Delta t<0} 时, ε r ( Δ t ) = 0 {displaystyle varepsilon _{r}(Delta t)=0} ,则这积分的上限可以延伸至无穷大:做一个对于时间与空间的傅里叶变换,根据折积定理,可以得到其中, σ ( k , ω ) {displaystyle sigma (mathbf {k} ,omega )} 是参数为波矢 k {displaystyle mathbf {k} } 和角频率 ω {displaystyle omega } 的电导率复函数。许多物质的电导率是张量,电流可能不会与施加的电场同方向。例如,晶体物质这是这样的物质。磁场的施加也可能会改变电导行为。穿过曲面 S {displaystyle mathbb {S} } 的电流 I {displaystyle I} 可以用面积分计算为其中, J {displaystyle mathbf {J} } 是电流密度, d a {displaystyle mathrm {d} mathbf {a} } 是微小面元素。由于电荷守恒,从某设定体积流出的电流的净流量,等于在这体积内部的电荷量的净变率。以方程表达,其中, ρ {displaystyle rho } 是电荷密度, d r 3 {displaystyle mathrm {d} r^{3}} 是微小体元素, V {displaystyle mathbb {V} } 是闭曲面 S {displaystyle mathbb {S} } 所包围的体积。这方程左边的面积分表示电流从闭曲面 S {displaystyle mathbb {S} } 所包围的体积 V {displaystyle mathbb {V} } 流出来,中间和右边的体积分的负号表示,随着时间的前进,体积内部的电荷量逐渐减少。根据散度定理,所以,注意到对于任意体积 V {displaystyle mathbb {V} } ,上述方程都成立。所以,两个被积式恒等:称这方程为连续方程。

相关

  • 南亚南亚(英语:South Asia)是术语,以替换百年老词“印度次大陆”,这老词用来代表亚洲大陆的南部地区,主要是位于印度板块和向南投射到印度洋的地方。是亚洲的一个亚区(英语:subregion),泛
  • 华尔街坐标:40°42′23″N 74°00′34″W / 40.70639°N 74.00944°W / 40.70639; -74.00944华尔街(英语:Wall Street)是一条位于美国纽约市下曼哈顿的狭窄街道,西起百老汇三一教堂,向东
  • 宫颈管消失宫颈管消失(英语:Cervical effacement),也称宫颈成熟(英语:cervical ripening),是指宫颈管薄化症状。它也是比效普评分(英语:Bishop score)的参数之一,它也可以通过百分比进行表述。患者
  • Pliny the Elder盖乌斯·普林尼·塞孔杜斯(拉丁语:Gaius Plinius Secundus,23年-79年8月24日),常称为老普林尼或大普林尼,古罗马作家、博物学者、军人、政治家,以《自然史》(一译《博物志》)一书留名
  • 科隆科隆(德语:Köln,  listen 帮助·信息;1919年前德语也拼写为Cöln,科隆语:Kölle,法语:Cologne),是德国第四大城市,是北威州最大的城市,亦是德国内陆最重要的港口之一,莱茵地区的经济文
  • 映射映射,或者射影,在数学及相关的领域经常等同于函数。基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的
  • 电子处方电子处方(英文:electronic prescribing,或者e-prescribing),又称为开具电子处方、开立电子处方、 电子处方开立,是指医师利用实时的,病人特异性的临床信息和财务信息,为让病人知情同
  • 氯化钡氯化钡(化学式:BaCl2)是钡的氯化物,有毒,灼烧时产生黄绿色的光。氯化钡可以由碳酸钡(自然界中的毒重石)或氢氧化钡和盐酸的反应得到。工业上可以从硫酸钡经过两个步骤得到:氯化钡溶
  • 石坂照子石坂照子(日语:石坂 照子/いしざか てるこ Ishizaka Teruko ?,1926年9月28日-2019年6月4日),旧姓松浦,日本女性科学家、医学家、免疫学家,在欧美昵称Terry,曾任美国加州理工学院副教
  • 卢弘喆卢弘喆(朝鲜语:노홍철/盧弘喆 Ro Hong Chul;英语: Ro Hong-chul;1979年3月31日-)出生于韩国首尔,是韩国艺人及主持人。卢弘喆是韩国著名综艺节目《无限挑战》的前主持人,以“疯孩子”