瑞利-贝纳德对流

✍ dations ◷ 2025-07-27 15:51:41 #对流,流体动力学的不稳定性

瑞利-贝纳德对流(Rayleigh–Bénard convection)泛指一类自然对流,这类对流常常发生在从底部加热的一层流体表面上。发生对流的流体在表面形成的、具有规则形状的对流单体(英语:convection cells)叫做贝纳德原胞(Bénard cell)。因为在理论研究和实验上并具可行性,瑞利-贝纳德对流是被研究得最多的对流现象之一,而对流形成的图案也成为了在自组织的非线性系统中被测试得最细的一个例子,在物理学以及大气科学中被广泛用于各种环流和对流现象的研究中。

浮力和重力是形成瑞利-贝纳德对流的主要原因。位于底部的液体因为受热而密度较低,在其上浮过程中自发形成了规则的原胞图案。

瑞利-贝纳德对流的特征可以通过法国物理学家亨利·贝纳德(英语:Henri Bénard)在1900年完成的一个简单实验来观察。

实验利用了夹在两层平行板之间的一层液体(例如水)。首先,令上下两板的温度一致;夹在两板之间的液体会趋向热力学平衡;此平衡也是渐进稳定的。接着,稍稍升高底部的温度将导致热量通过液体向上传导;系统开始出现热传导的结构,线性的温度梯度被建立起来。此时,微观的无序运动会自发地在宏观尺度上变得有序,形成具有一定特征相关长度的贝纳德原胞。

在瑞利-贝纳德对流中,对流原胞的旋转是稳定的,顺时针和逆时针的方向交替出现:这是自发对称破缺的一个实例。贝纳德原胞处于亚稳态,较小的扰动不会改变原胞的旋转,而较大的则会有影响。这也是某种形式的迟滞现象的表现。

另外在模拟的过程中也发现,微观层面上具有决定性的定律,在宏观层面上却造成了非决定性的结果。对初态(英语:initial condition)进行微观层面上的扰动足以产生非决定性的宏观效应。某个微观扰动在宏观上产生的效应是无法计算的,这也是复杂系统(complex system)的特征之一(即蝴蝶效应)。如果进一步提升液体底部的温度,之前形成的湍流会变得混沌起来。

对流的贝纳德原胞趋向于形成规则的正六角棱柱,特别是在没有过分扰动的情况下;在某些实验条件下,原胞也会出现正四棱柱或螺旋状。

贝纳德原胞常出现在由表面张力驱动的对流中。一般来说,瑞利和皮尔森的分析(线性理论)的解导致了简并的出现。若考虑实际的系统,对流图案则取决于系统边界的形状。

由于液体的上表面和下表面之间有密度梯度,重力会使较冷的、密度较大的液体向下运动,而此运动会受到液体粘性阻尼的阻扰。两股作用力的平衡可以由一个无量纲的参数(瑞利数)来表示。此处的瑞利数定义如下:

其中

随着瑞利数的增大,重力在系统中的影响越大。系统在临界瑞利数1708时开始不稳定,出现对流原胞。

在某稳定系统中通过对线性化的方程进行微扰分析,可获得某些边界条件下的临界瑞利数。最简单情况的是两条自由的边界(即瑞利男爵在1916年解出的情况),得到的瑞利数 Ra = 27⁄4 π4 ≈ 657.51。对于刚性的底部和自由的顶部边界条件(对应着无盖的水壶),则有临界瑞利数 Ra = 1,100.65。

若液体上表面与空气接触,浮力和表面张力也会参与对流图案的形成。由于马伦哥尼效应,液体趋向于流向表面张力较强的区域。升高温度会降低液体的表面张力,导致液体从较热的区域流向较冷的区域。为了保持液面水平,较冷的液体将会下降,这也成为了对流原胞形成的驱动力之一。这一类由温度梯度驱动的特殊例子被称为热毛细对流(thermo-capillary convection)或贝纳德-马伦哥尼对流(Bénard–Marangoni convection)。

瑞利男爵是最早对瑞利-贝纳德对流进行成功的理论分析的科学家,他假设的边界条件是:在上下表面边界,流体速度在竖直方向上的分量为零,且没有温度干扰。这些假设令他的分析与亨利·贝纳德的实验相左。之后,皮尔森基于对表面张力的考虑,重新对贝纳德的实验进行了分析。虽然如此,现今用“瑞利-贝纳德对流”指代温度造成的效应,而用“贝纳德-马伦哥尼对流”指代表面张力造成的效应。Davis 和 Koschmieder 建议将瑞利-贝纳德对流正名为“皮尔森-贝纳德对流”。

相关

  • 土库曼斯坦面积家用电源国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2017年估计人类发展指数 以下资讯是以2018年估计立国历史土库曼斯
  • 亅部,为汉字索引里为部首之一,康熙字典214个部首中的第六个(一划的则为第六个)。就繁体中文中,亅部归于一划部首,而在简体字部首中,“亅部”并入“丨部”,视为“丨部”的附形部首。
  • TPD伸缩像素显示器(英语:Telescopic pixel display,简称TDP)是一种新型显示技术,介于液晶显示器(LCD)和数字微镜设备(英语:Digital micromirror device)(DMD)(基于数字光处理投影仪)之间,同时
  • 马丘比丘宪章《马丘比丘宪章》是1977年12月国际建筑协会在利马会议结束时发表的一份关于城市规划的纲领性文件,最终在马丘比丘签署了这一宪章,并以此地命名。这次会议以雅典宪章为出发点进
  • 岩手县岩手县(日语:岩手県/いわてけん〔いはてけん〕 Iwate ken */?)是日本本州东北地方东北部的一个县,其总面积15,278.88平方公里,在全日本的都道府县之中排行第二,仅次于北海道,是日
  • 美国西南研究院美国西南研究院(英语:Southwest Research Institute,简称SwRI)是美国其中一个历史最悠久、规模最庞大的独立非营利性质应用技术研发机构,总部位于美国得克萨斯州圣安东尼奥,由美国
  • 吉林环城农村商业银行吉林环城农村商业银行股份有限公司是中国吉林省吉林市的一家农村商业银行。1992年2月10日,吉林市郊区更名为丰满区,并将郊区原辖的乡镇街道、村委划拨给船营区、昌邑区、龙潭
  • 台南应用科技大学台南应用科技大学(Tainan University of Technology,TUT),学校正式全衔为台南家专学校财团法人台南应用科技大学,简称南应大、南应、南科、台南应用科大、台南科大、TUT。 旧称台
  • 2011年世界游泳锦标赛跳水比赛2011年世界游泳锦标赛跳水比赛为第十四届世界游泳锦标赛的其中一个比赛项目,共设有10个小项。赛事于7月16日至25日在上海东方体育中心室外跳水池(月亮湾)举行。本届赛事十个小
  • 阿斯克蕾毕珍妮亚阿斯克蕾毕珍妮亚(Ἀσκληπιγένεια,fl. 公元430年)是一位雅典女性哲学家、神秘主义者,其生平记载于马努里斯的《Life of Proclus》中,其父为雅典的新柏拉图主义者哲学