瑞利-贝纳德对流

✍ dations ◷ 2025-05-20 09:20:55 #对流,流体动力学的不稳定性

瑞利-贝纳德对流(Rayleigh–Bénard convection)泛指一类自然对流,这类对流常常发生在从底部加热的一层流体表面上。发生对流的流体在表面形成的、具有规则形状的对流单体(英语:convection cells)叫做贝纳德原胞(Bénard cell)。因为在理论研究和实验上并具可行性,瑞利-贝纳德对流是被研究得最多的对流现象之一,而对流形成的图案也成为了在自组织的非线性系统中被测试得最细的一个例子,在物理学以及大气科学中被广泛用于各种环流和对流现象的研究中。

浮力和重力是形成瑞利-贝纳德对流的主要原因。位于底部的液体因为受热而密度较低,在其上浮过程中自发形成了规则的原胞图案。

瑞利-贝纳德对流的特征可以通过法国物理学家亨利·贝纳德(英语:Henri Bénard)在1900年完成的一个简单实验来观察。

实验利用了夹在两层平行板之间的一层液体(例如水)。首先,令上下两板的温度一致;夹在两板之间的液体会趋向热力学平衡;此平衡也是渐进稳定的。接着,稍稍升高底部的温度将导致热量通过液体向上传导;系统开始出现热传导的结构,线性的温度梯度被建立起来。此时,微观的无序运动会自发地在宏观尺度上变得有序,形成具有一定特征相关长度的贝纳德原胞。

在瑞利-贝纳德对流中,对流原胞的旋转是稳定的,顺时针和逆时针的方向交替出现:这是自发对称破缺的一个实例。贝纳德原胞处于亚稳态,较小的扰动不会改变原胞的旋转,而较大的则会有影响。这也是某种形式的迟滞现象的表现。

另外在模拟的过程中也发现,微观层面上具有决定性的定律,在宏观层面上却造成了非决定性的结果。对初态(英语:initial condition)进行微观层面上的扰动足以产生非决定性的宏观效应。某个微观扰动在宏观上产生的效应是无法计算的,这也是复杂系统(complex system)的特征之一(即蝴蝶效应)。如果进一步提升液体底部的温度,之前形成的湍流会变得混沌起来。

对流的贝纳德原胞趋向于形成规则的正六角棱柱,特别是在没有过分扰动的情况下;在某些实验条件下,原胞也会出现正四棱柱或螺旋状。

贝纳德原胞常出现在由表面张力驱动的对流中。一般来说,瑞利和皮尔森的分析(线性理论)的解导致了简并的出现。若考虑实际的系统,对流图案则取决于系统边界的形状。

由于液体的上表面和下表面之间有密度梯度,重力会使较冷的、密度较大的液体向下运动,而此运动会受到液体粘性阻尼的阻扰。两股作用力的平衡可以由一个无量纲的参数(瑞利数)来表示。此处的瑞利数定义如下:

其中

随着瑞利数的增大,重力在系统中的影响越大。系统在临界瑞利数1708时开始不稳定,出现对流原胞。

在某稳定系统中通过对线性化的方程进行微扰分析,可获得某些边界条件下的临界瑞利数。最简单情况的是两条自由的边界(即瑞利男爵在1916年解出的情况),得到的瑞利数 Ra = 27⁄4 π4 ≈ 657.51。对于刚性的底部和自由的顶部边界条件(对应着无盖的水壶),则有临界瑞利数 Ra = 1,100.65。

若液体上表面与空气接触,浮力和表面张力也会参与对流图案的形成。由于马伦哥尼效应,液体趋向于流向表面张力较强的区域。升高温度会降低液体的表面张力,导致液体从较热的区域流向较冷的区域。为了保持液面水平,较冷的液体将会下降,这也成为了对流原胞形成的驱动力之一。这一类由温度梯度驱动的特殊例子被称为热毛细对流(thermo-capillary convection)或贝纳德-马伦哥尼对流(Bénard–Marangoni convection)。

瑞利男爵是最早对瑞利-贝纳德对流进行成功的理论分析的科学家,他假设的边界条件是:在上下表面边界,流体速度在竖直方向上的分量为零,且没有温度干扰。这些假设令他的分析与亨利·贝纳德的实验相左。之后,皮尔森基于对表面张力的考虑,重新对贝纳德的实验进行了分析。虽然如此,现今用“瑞利-贝纳德对流”指代温度造成的效应,而用“贝纳德-马伦哥尼对流”指代表面张力造成的效应。Davis 和 Koschmieder 建议将瑞利-贝纳德对流正名为“皮尔森-贝纳德对流”。

相关

  • 墨西哥城墨西哥城(西班牙语:Ciudad de México 西班牙语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","C
  • 美国食品药品监督局美国食品药品监督管理局(英语:U.S. Food and Drug Administration,缩写为FDA)为美国卫生与公众服务部直辖的联邦政府机构,其主要职能为负责对美国国内生产及进口的食品、膳食补充
  • 崇陵崇陵,可以指:
  • 棚户区棚户区一般指城市中有成片简陋民居的地区。根据中华人民共和国建设部的定义,棚户房为严重损坏房、危险房的房屋,棚户房建筑面积5万平方米以上的为棚户区。其性质类似于城中村
  • 曹时曹时(前2世纪-前131年),又作曹寿,西汉第四代平阳侯。娶汉景帝之女阳信长公主为妻。曹时是西汉开国功臣曹参的曾孙。汉景帝四年(前154年),曹时继承平阳侯爵位。元光四年(前131年)平阳侯
  • 葡萄糖淀粉酶葡萄糖淀粉酶是一种酸性的单链外切型糖苷水解酶,不仅能催化淀粉水解为葡萄糖,还能从淀粉糖链的非还原末端 (即不可以形成半缩醛的羟基) 切下葡萄糖分子。葡萄糖淀粉酶目前已在
  • 马都拉族马都拉族(印尼语:Madura),是东南亚的一个民族。印度尼西亚的民族之一。有近千万的人口,主要分布在爪哇岛东北方的马都拉岛,以及东爪哇地区,大多数信奉伊斯兰教。他们有着独特的民族
  • 李准 (清朝)李准(1871年3月26日-1936年12月22日),四川省邻水县太安乡太安里柑子铺李家坝人(今柑子乡活水沟桅子湾人)。 原名继武,派名新业,亦名木,字直绳,又字志莱,号恒斋、默斋,别号任庵、平叔。同
  • 曹宜溥曹宜溥,字子仁,号凤冈,湖北东乡人。先世为湖广黄冈籍。侍读学士曹本荣之子。宜溥为荫监生,康熙十八年由湖广巡抚张朝珍荐举博学鸿词科,试列二等二十三名,授翰林院检讨。
  • 格奥尔格·廷特纳格奥尔格·廷特纳,CM(德语:Georg Tintner,1917年5月22日 – 1999年10月2日)奥地利出生的指挥家,其职业生涯主要在新西兰、澳大利亚和加拿大进行。虽然他指挥家的身份最著名,但他也