负数

✍ dations ◷ 2025-05-16 16:46:22 #负数
负数,在数学上指小于0的实数,如−2、−3.2、−807.5等,与正数相对。和实数一样,负数也是一个不可数的无限集合。这个集合在数学上通常用粗体R−或 R − {displaystyle mathbb {R} ^{-}} 来表示。负数与0统称非正数。N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数质数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }负整数可以被认为是自然数的扩展,使得等式 x − y = z {displaystyle x-y=z} 对任意 x {displaystyle x} 和 y {displaystyle y} 都有意义。相对而言,其他数的集合都是从自然数通过逐步扩展得到的。负数在表示小于 0 的值的时候非常有用。例如,在会计学上,它可以被用来表示负债,而且通常以红色表示(若不带负数符号则加上括号),所以又称“赤字”。自从公元前4世纪的汉代,中国数学家就已经了解负数和零的概念了。 公元1世纪的《九章算术》说“正负术曰:同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”(这段话的大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数。”)以上文字里的“无入”通常被数学历史家认为是零的概念。(全文见维基文库的《九章算术》)尽管中国古人首先发现并应用了负数,但却并没有从理性方面讨论负数存在的意义和本质,这可能是文化习惯导致的。对负数精确的定义,和其根本属性的讨论,是由近代西方数学家首先完成的。西方最早在数学上使用负数的文献纪录,是由古印度数学家婆罗摩笈多于公元628年完成的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》。它的出现是为了表示负资产或债务。在很大程度上,欧洲数学家直到17世纪才接受负数的概念。在实数上可以定义这样一个函数 sgn ⁡ ( x ) {displaystyle operatorname {sgn}(x)} ,它对正数取值为 1,负数取值为 −1,0 取值为 0。这个函数通常被称为符号函数:当 x {displaystyle x} 不为 0 时,则有:这里, | x | {displaystyle leftvert xrightvert } 为 x {displaystyle x} 的绝对值, H ( x ) {displaystyle H(x)} 为单位阶跃函数。请参见导数。加上一个负数相当于减去其相反数:一个较大的正数减去一个较小的正数将得到一个正数一个较小的正数减去一个较大的正数将得到一个负数:任意负数减去一个正数总得到一个负数:减去一个负数相当于加上相应的正数:一个负数和一个正数相乘得到一个负数: ( − 2 ) × 3 = − 6 {displaystyle (-2)times 3=-6} 。这里,乘法可以被看作是多次加法的重复: ( − 2 ) × 3 = ( − 2 ) + ( − 2 ) + ( − 2 ) = − 6 {displaystyle (-2)times 3=(-2)+(-2)+(-2)=-6} 。两个负数相乘得到一个正数: ( − 3 ) × ( − 4 ) = 12 {displaystyle (-3)times (-4)=12} 。这里,乘法不能再被看作是多次加法的重复了,而是为了使乘法满足分配律:等式的左边为 0 × ( − 4 ) = 0 {displaystyle 0times (-4)=0} 。等式的右边为 − 12 + ( − 3 ) × ( − 4 ) {displaystyle -12+(-3)times (-4)} 。为了使两边相等,必须要 ( − 3 ) × ( − 4 ) = 12 {displaystyle (-3)times (-4)=12} 。除法和乘法类似。若被除数和除数有不同的符号,结果是一个负数:若被除数和除数有相同的符号(就算他们均为负),结果是一个正数:

相关

  • 洪峰洪峰可以指:
  • 生物大分子生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸 (DNA、RNA等)、糖类。这只是一个概念性定义,与生物大
  • 白令海峡白令海峡(英语:Bering Strait、楚科奇语:Эʼрвытгыр、俄语:Бе́рингов проли́в),或译白林海峡,是太平洋的一个海峡,位于亚洲最东点的迭日涅夫角(169°43' W)和
  • 治疗治疗(英语:Therapy),指用于解决健康问题的手段,通常在医学诊断后实施。
  • 格鲁及亚人格鲁及亚人(学名:Homo georgicus)是灵长目人科人属的一种,于2002年建议用来描述于1999年及2001年在格鲁吉亚德马尼西发现的头颅骨及颚骨化石,被认为是巧人及直立人的过渡形态。一
  • 细胞生物细胞(英语:Cell)旧称䏭,是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹
  • 方解石方解石(英语:calcite)是碳酸钙(化学式:CaCO3)的稳定形态,呈现菱面体或偏三角面体,聚形呈钉头或犬牙状。其中,菱面体有双折射性。方解石晶体属三方晶系的碳酸盐矿物,在地球的表面广泛分
  • 甘油脱氢酶甘油脱氢酶(英语:glycerol dehydrogenase,EC 1.1.1.6)是一种以NAD+或NADP+为受体、作用于供体CH-OH基团上的氧化还原酶。这种酶能催化以下酶促反应:甘油脱氢酶主要参与甘油脂的代
  • 白兰地白兰地(英文:Brandy,从荷兰文Brandewijn而来,意思烧酒),为以葡萄酒加以蒸馏浓缩制成的酒。广义而言,只要是以果酒为基底,加以蒸馏制成的酒都可以称为白兰地,不过在名称前面加上相应的
  • 埃尔伯特县艾伯特县(Elbert County, Georgia)是美国乔治亚州东北部的一个县,1790年12月10日设立,东邻南卡罗莱纳州。面积970平方公里。根据美国2000年人口普查,共有人口20,511人。2005年的