曲率形式

✍ dations ◷ 2025-08-13 20:24:18 #曲率

微分几何中,曲率形式(curvature form)描述了主丛上的联络的曲率。它可以看作是黎曼几何中的曲率张量的替代或是推广。

令 为一个李群,记 的李代数为 g {\displaystyle g} -丛。令 ω {\displaystyle \omega } 上一个埃雷斯曼联络(它是一个上的 -值 1-形式)。

那么曲率形式就是 上的 -值 2-形式,定义为

这里 d {\displaystyle d} 表示外共变导数。或者说

E B {\displaystyle E\to B} ,我们可以在相伴的主 -丛上重复同样的定义。

E B {\displaystyle E\to B} 代表外共变导数。

第一比安基恒等式(对于标架丛的有挠率联络)取以下形式

第二比安基恒等式对于一般有联络的丛成立,并有如下形式

相关

  • 清朝的外交清朝初期,清朝政府与俄罗斯沙皇国政府签订了《尼布楚条约》,该条约中国称为平等条约,俄罗斯(含苏联时期)称为不平等条约(俄罗斯人认为《瑷珲条约》中收回了被中国人强占的失地)。有
  • 奎卡特克语奎卡特克语(英语:Cuicatec Language)为墨西哥瓦哈卡州西部民族奎卡特克族(英语:Cuicatec people)广泛使用的语言,属欧托-曼格语系。奎卡特克族与米斯特克族联系较为紧密。据2000年
  • 范镇 (文学家)范镇(1009年-1089年1月15日),字景仁,华阳(今四川成都)人,北宋文学家、史学家。四岁既孤,从二兄范镃、范锴为学,又尝受学于乡先生庞直温,由范镃推荐跟随薛奎入京。薛奎预言范镇:“当以文
  • 方素珍方素珍,宜兰县罗东人,1957年生,台湾儿童绘本作家,1975年开始从事儿童文学相关创作,著有《娃娃的眼睛》、《祝你生日快乐》、《一只猪在网络上》等与儿童文学有关的创作、翻译等七
  • 墨脱蹄盖蕨墨脱蹄盖蕨(学名:),为蹄盖蕨科蹄盖蕨属下的一个植物种。
  • 我的早更女友《我的早更女友》(英语:)是由郭在容执导,由周迅、佟大为、钟汉良、张梓琳领衔主演的爱情喜剧电影。
  • 相棒的登场人物相棒的登场人物,是对朝日电视台播映的刑事、推理电视剧《相棒》登场的虚构角色的介绍,此条目因应剧集播映而随时更新。下列以“PS.”作pre season(前传)、“S.”作season的简称
  • 梁以辰梁以辰(1990年10月24日-),台湾女演员,广告演员出身,客串电影“军中乐园”、“痞子英雄”。2014年11月与艾熙、若颖、源元所共组微风女子团体Breeze。2014年11月5日发行首张EP《Pre
  • 李荆荪李荆荪(1917年2月6日-1988年2月12日),是一位出身无锡、定居台湾的新闻从业员及白色恐怖受难者。他是新闻杂志《新闻天地》共同创办人,曾任《中央日报》驻南京及台北总编辑、中国
  • 后藤萌咲后藤萌咲(日语:後藤 萌咲/ごとう もえ  */?,2001年5月20日-)是日本女艺人,为女子偶像团体AKB48前成员,名古屋市出身,所属经纪公司为TWIN PLANET ENTERTAINMENT。