有限单群分类

✍ dations ◷ 2025-12-11 06:39:54 #群论,散在群,有限群,代数定理

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

有限单群的分类是代数学里的一个巨大的工程。有关的文章大多发表于1955年至2004年之间,目的在于将所有的有限简单群都给清楚地分类。这项工程总计约有100位作者在500篇期刊文章中写下了上万页的文字。

若结果是正确的话,分类表示每个有限简单群都会是下列每类型的其中一种:

此一定理在数学的许多分支都有着广泛的应用,有关有限群的问题通常可以归并至有关有限简单群的问题上,再依此一分类即可将问题限于有限个例子的列举。

有时提次群会被归类为一种散在群(在此故而有27个散在群),因为严格来说它不是李群。

散在群中的其中五个是在1860年代中由马提厄(Mathieu)所发现的,而其他的21个则是在1965年至1975年之间被找出来的。有一些此类的群在它们被建构出来前曾被预测其会存在。大多数此类的群是以第一个预测出其存在之数学家来命名的。其完整的列表如下:

对于所有散在群在有限域上的矩阵表示除了怪兽群之外都已经被算出来了。

在26个散在群当中,有20个可以看做是如怪兽群的子群或其子群的商一般地在怪兽群之内。其他6个为134、、和。这6个群有时会被称为贱民(pariahs)。

直至目前为止,对散在群的一个可信的统一叙述方面的进展还是很少。

因为发表出来的文章的长度及复杂度和实际上有些假设的证明还没有被发表出来,有些人依然对这些文章能否对此定理提供一个完整且正确的证明有所怀疑。让-皮埃尔·塞尔即为对其证明提出怀疑的人之中很有名的一位。这些怀疑被证实是证明中的空白,这些空间都在之后被找了出来且最终被填补了起来。

经过了一个年代的时间,专家们查觉到了一个“严重的空白”(由麦克·亚许巴赫所发现),在Geoff Mason(未发表地)对准薄群的分类上。葛仑斯坦(Gorenstein)在1983年宣称已完成有限简单群的分类,部分基于对准薄群方面的证明已完成的认知上。亚许巴赫在1990年代早期将此一空白填补起来。亚许巴赫和史蒂芬·史密斯发表了两册约有1300页的不同证明。

因为有限简单群分类的证明真的实在是太长了,所以有许多被称做“修正”的工作,原本由丹尼尔·葛仑斯坦所领导,在找寻着一个更简单的证明。这即是所谓的二代分类证明。

直到2005年,已有六册被发表了出来,其他还有许多的原稿存在。亚许巴赫和史密斯的两册提供了可以作用在一代和二代证明上有关准薄群方面的一个证明。预计当新的证明完成之后将会有大约5000页的页数。(需注意的是,较新的证明会以较丰富的形式写出。)

葛仑斯坦和其同事给出了一些对于较简单的证明是可能达成的理由。其中最重要的一点是因为现在已经知道了正确且最终的叙述,而所能应用的技术也已足够用来研究这些群。相反地,在原本的证明里,没有人知道到底有多少个散在群,且实际上有些散在群还是在试图证明分类定理的过程中被发现出来的,如扬科群,以致于应用了些过分一般的技术。

而且,也因为不知道结论是什么,甚至有很长的一段时间是令人觉得不可信的,所以原本的证明中有含有许多个单独的完整定理,分类了一些重要的特例。这些定理为了达成其自身的最终叙述,必须要去分析数个特例。通常,大多数的工作都是在做这些例外的事情。做为一个较大且协调的证明之一部分,这些许多特例都是可以不需要去理会的,当更强的假设被加上来时即可得到。因此而得到的收获即为,原本的定理在修正后就不再会有那么较小的证明了,但还是会有一个完整的分类。

不再有那些需要去理会例子的再细分才有效的单独定理。多个目标的群因此都会有多重的等价。修正后的证明会依靠着不同例子的细分来减少其多余的部分。

最后,有限群论学家将会有更多的经验和更新的技术。

相关

  • 性质在逻辑学、数学和哲学中,性质(英语:property)是对象的特征,例如:红苹果的性质包括红性(英语:redness,直译:红的-名词标记)。性质可以被认为是对象拥有的形式。但是,性质和那些独立的例示
  • 法兰西王国法兰西王国(法语:Royaume de France)为西欧法国的一个君主制国家,存在时间为987年至1792年,并在1814年至1815年及1815年至1848年间复辟。987年,法兰西公爵雨果·卡佩被贵族推举为
  • 朝鲜民主主义人民共和国中央银行朝鲜民主主义人民共和国中央银行是朝鲜的中央银行及发钞银行,现任行长为金千均。该银行的正式成立日期是1947年12月6日。1946年2月15日,朝鲜成立了其中央银行,并由苏联军方接管
  • 美国国会警察美国国会警察局(又译作国会山庄警察部,United States Capitol Police ,简称USCP)是美国联邦警力,该局不仅负责国会议员、官员及其家属在哥伦比亚特区内的安全,还负责其在全国范围
  • 镍的同位素镍(原子量:58.6934(2))共有24个同位素,其中有4个是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。
  • 1963年夏季世界大学生运动会第三届夏季世界大学生运动会于1963年8月30日至9月4日在巴西阿列格雷港举行,共有27个国家和地区的713名运动员参加。 *  主办国家/地区(巴西)
  • 练马区立开进第一中学校练马区立开进第一中学校(日语:练马区立开进第一中学校/ねりまくりつかいしんだいいちちゅうがっこう Nerima Kuritsu Kaishin Daiichi Chuugakkou *),简称开一(かいいち),是在早宫
  • 凉水镇 (阆中市)凉水乡,是中华人民共和国四川省南充市阆中市下辖的一个乡镇级行政单位。2019年10月,撤销凉水镇,将其所属行政区域划归石滩镇管辖。凉水乡下辖以下地区:七羊山村、崇山观村、顶山
  • 伊朗伊斯兰共和国通讯社伊朗伊斯兰共和国通讯社(خبرگزاري جمهوري اسلامي ايران),简称伊通社,是伊朗的官方通讯社之一,前身为1934年成立的波斯通讯社,1979年伊朗伊斯兰革命后改
  • 乐经《乐经》是传说中的儒家六经之一,久佚,后世多谓之毁于秦始皇焚书,但《乐经》是否存在仍然众说纷纭。古往今来有多人对其进行过论述,可大致归纳如下:2008年7月由校友赵伟国从境外