有限单群分类

✍ dations ◷ 2025-12-01 04:10:33 #群论,散在群,有限群,代数定理

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

有限单群的分类是代数学里的一个巨大的工程。有关的文章大多发表于1955年至2004年之间,目的在于将所有的有限简单群都给清楚地分类。这项工程总计约有100位作者在500篇期刊文章中写下了上万页的文字。

若结果是正确的话,分类表示每个有限简单群都会是下列每类型的其中一种:

此一定理在数学的许多分支都有着广泛的应用,有关有限群的问题通常可以归并至有关有限简单群的问题上,再依此一分类即可将问题限于有限个例子的列举。

有时提次群会被归类为一种散在群(在此故而有27个散在群),因为严格来说它不是李群。

散在群中的其中五个是在1860年代中由马提厄(Mathieu)所发现的,而其他的21个则是在1965年至1975年之间被找出来的。有一些此类的群在它们被建构出来前曾被预测其会存在。大多数此类的群是以第一个预测出其存在之数学家来命名的。其完整的列表如下:

对于所有散在群在有限域上的矩阵表示除了怪兽群之外都已经被算出来了。

在26个散在群当中,有20个可以看做是如怪兽群的子群或其子群的商一般地在怪兽群之内。其他6个为134、、和。这6个群有时会被称为贱民(pariahs)。

直至目前为止,对散在群的一个可信的统一叙述方面的进展还是很少。

因为发表出来的文章的长度及复杂度和实际上有些假设的证明还没有被发表出来,有些人依然对这些文章能否对此定理提供一个完整且正确的证明有所怀疑。让-皮埃尔·塞尔即为对其证明提出怀疑的人之中很有名的一位。这些怀疑被证实是证明中的空白,这些空间都在之后被找了出来且最终被填补了起来。

经过了一个年代的时间,专家们查觉到了一个“严重的空白”(由麦克·亚许巴赫所发现),在Geoff Mason(未发表地)对准薄群的分类上。葛仑斯坦(Gorenstein)在1983年宣称已完成有限简单群的分类,部分基于对准薄群方面的证明已完成的认知上。亚许巴赫在1990年代早期将此一空白填补起来。亚许巴赫和史蒂芬·史密斯发表了两册约有1300页的不同证明。

因为有限简单群分类的证明真的实在是太长了,所以有许多被称做“修正”的工作,原本由丹尼尔·葛仑斯坦所领导,在找寻着一个更简单的证明。这即是所谓的二代分类证明。

直到2005年,已有六册被发表了出来,其他还有许多的原稿存在。亚许巴赫和史密斯的两册提供了可以作用在一代和二代证明上有关准薄群方面的一个证明。预计当新的证明完成之后将会有大约5000页的页数。(需注意的是,较新的证明会以较丰富的形式写出。)

葛仑斯坦和其同事给出了一些对于较简单的证明是可能达成的理由。其中最重要的一点是因为现在已经知道了正确且最终的叙述,而所能应用的技术也已足够用来研究这些群。相反地,在原本的证明里,没有人知道到底有多少个散在群,且实际上有些散在群还是在试图证明分类定理的过程中被发现出来的,如扬科群,以致于应用了些过分一般的技术。

而且,也因为不知道结论是什么,甚至有很长的一段时间是令人觉得不可信的,所以原本的证明中有含有许多个单独的完整定理,分类了一些重要的特例。这些定理为了达成其自身的最终叙述,必须要去分析数个特例。通常,大多数的工作都是在做这些例外的事情。做为一个较大且协调的证明之一部分,这些许多特例都是可以不需要去理会的,当更强的假设被加上来时即可得到。因此而得到的收获即为,原本的定理在修正后就不再会有那么较小的证明了,但还是会有一个完整的分类。

不再有那些需要去理会例子的再细分才有效的单独定理。多个目标的群因此都会有多重的等价。修正后的证明会依靠着不同例子的细分来减少其多余的部分。

最后,有限群论学家将会有更多的经验和更新的技术。

相关

  • 稀有金属稀有元素是自然界中储量、分布稀少(一般地壳丰度为100ppm以下)且人类应用较少的元素总称。稀有元素常用来制造特种金属材料,如特种钢、合金等,在飞机、火箭、原子能等工业领域属
  • 中国珠算——运用算盘进行数学计算的知识与实践珠算是指用算盘计算,珠算有对应四则运算的相应法则,统称珠算法则。珠算以算盘口诀控制珠算过程,惟熟练后不用加减口诀。各种算盘有不同的指法和口诀。2013年,中国珠算被联合国教
  • 萨斯喀彻温大学萨斯喀彻温大学(英语:University of Saskatchewan),简称萨省大学,是一所位于加拿大萨斯喀彻温省萨斯卡通的综合性大学,是该省境内最大的高等教育机构。该大学建于1907年4月3日,位于
  • 游戏牌游戏牌(英语:playing cards),是指以厚纸片、塑胶片等类似材质作的卡片,通常标有符号、数字,以多张组成呈现序数排列的牌组,作为卡片游戏使用,也有用于占卜。关于游戏牌起源还不是完
  • 拉包尔拉包尔(Rabaul),又译腊包尔,是巴布亚新几内亚的一个城市,位于新不列颠岛。在1994年以前,拉包尔一直都是东新不列颠省的省会。城市始建于1883年, 坐落在一座大型火山的火山环上,时常
  • 杨 昆杨昆(1963年-),原名杨崑,云南昆明人,祖籍山东,中国大陆女演员。代表作有《十六岁的花季》、《婆婆媳妇小姑》、《笑傲江湖》等。曾获第十七届中国电视金鹰奖最佳女配角奖。
  • 圣何塞 (加利福尼亚州)圣何塞(英语:San Jose;/ˌsæn hoʊˈzeɪ/),是美国加州旧金山湾区的一个城市。位于旧金山湾区南部、圣克拉拉县和硅谷境内,是在人口上加州的第三大城,仅次于洛杉矶和圣迭戈,并且在2
  • 沃州体育馆沃州体育馆(法语:Vaudoise aréna,德语:Waadtländer Arena),临时名称为马莱空间(Espace Malley),是一座位于瑞士洛桑普里伊的综合性体育馆。体育馆于2019年9月24日启用,体育馆兴建于
  • 于里坐标:59°21′17″N 24°53′41″E / 59.35472°N 24.89472°E / 59.35472; 24.89472于里(爱沙尼亚语:Jüri),是爱沙尼亚的城镇,位于该国北部,由哈尔尤县负责管辖,是拉埃乡的首府,距
  • 4-辛炔4-辛炔(英语:4-Octyne,也称为二丙基乙炔,dipropylethyne)是辛炔的一种同分异构体,分子式C8H14,4号与5号碳原子之间为碳碳三键。在常温常压下,4-辛炔密度为0.751 g/mL,沸点为131–132