安培力定律

✍ dations ◷ 2025-09-10 06:58:04 #静磁学,电磁学,物理定律,基本物理概念

在静磁学里,安培力定律专门描述两条载流导线相互作用的吸引力或排斥力,又称为安培力,是由载流导线的电流所产生的磁场(根据毕奥-萨伐尔定律),与对方的移动电荷的速度耦合而形成的洛伦兹力。安培力定律是因安德烈-玛丽·安培而命名。

设定两条细直、无限长、固定的、相互平行的载流导线,则在自由空间内,任意一条导线施加于对方的每单位长度作用力 f m {\displaystyle f_{m}\,\!}

其中, μ 0 {\displaystyle \mu _{0}\,\!} 是真空磁导率, I 1 {\displaystyle I_{1}\,\!} I 2 {\displaystyle I_{2}\,\!} 分别是流动于两条导线的电流, r {\displaystyle r\,\!} 是两条导线之间的垂直距离。

采用国际单位制, μ 0 {\displaystyle \mu _{0}\,\!} 值定义为

假设每一条导线都载有 1 {\displaystyle 1\,\!} 安培,两条导线相隔 1 {\displaystyle 1\,\!} 米,则作用于每一条导线的每单位长度的磁力为 2 × 10−7 牛顿/米。

更一般性的,能够适用于更多案例的方程,可以用二重线积分来表达:

其中, F 12 {\displaystyle \mathbf {F} _{12}\,\!} 是导线 1 施加于导线 2 的作用力, I 1 {\displaystyle I_{1}\,\!} I 2 {\displaystyle I_{2}\,\!} 分别是流动于导线 1 和导线 2 的电流, C 1 {\displaystyle {\mathcal {C}}_{1}\,\!} C 2 {\displaystyle {\mathcal {C}}_{2}\,\!} 分别是导线 1 和导线 2 的线积分路径, d 1 {\displaystyle d{\boldsymbol {\ell }}_{1}\,\!} d 2 {\displaystyle d{\boldsymbol {\ell }}_{2}\,\!} 分别是 C 1 {\displaystyle {\mathcal {C}}_{1}\,\!} C 2 {\displaystyle {\mathcal {C}}_{2}\,\!} 的微小线元素, r 12 {\displaystyle \mathbf {r} _{12}\,\!} 是从 1 {\displaystyle {\boldsymbol {\ell }}_{1}\,\!} 指向 2 {\displaystyle {\boldsymbol {\ell }}_{2}\,\!} 的矢量, r 12 {\displaystyle r_{12}\,\!} 是其大小, r ^ 12 {\displaystyle {\hat {\mathbf {r} }}_{12}\,\!} 是其单位矢量。

根据毕奥-萨伐尔定律,导线 1 的磁场在微小线元素 d 2 {\displaystyle d{\boldsymbol {\ell }}_{2}\,\!} 位置是

根据洛伦兹力定律,作用于微小线元素位置 d 2 {\displaystyle d{\boldsymbol {\ell }}_{2}\,\!} 的洛伦兹力遵守以下方程

其中, d q {\displaystyle dq\,\!} 是微小电荷, E {\displaystyle \mathbf {E} \,\!} 是电场。

在这里,电场等于零。所以,

表达为积分形式:

将磁场的公式带入,可以得到

相关

  • 支气管扩张药支气管扩张药(英语:bronchodilator)是一种扩张支气管与细支气管的物质,降低呼吸系统阻力并增加通往肺部的气流量。支气管扩张药可以是内源性的(机体内自然产生的),也可以通过给药的
  • 生态负债日地球超载日(英语:Earth Overshoot Day,EOD),之前被称为是生态负债日(英语:Ecological Debt Day,EDD),指每年地球进入了生态赤字状态的日子,即是全球的生态足迹超越了地球可用的生物承载
  • 威斯康辛冰期末次冰期(英语:Last glacial period)是距今时间最近的一次冰期,发生于第四纪的更新世晚期,始于约11万年前,终于1.2万年前。末次冰期内,各地冰盖亦曾出现数次的进退。冰退称为间冰段
  • 孟买地理孟买是印度人口最多的大都市,位于印度马哈拉施特拉邦西海岸外的撒尔塞特岛,濒临阿拉伯海。面积为437.77平方千米。孟买大部分地方的平均海拔为10到15米。孟买的北部地形起伏,该
  • 逝世人物列表2011年逝世人物列表:1月 - 2月 - 3月 - 4月 - 5月 - 6月 - 7月 - 8月 - 9月 - 10月 - 11月 - 12月
  • 公认安全GRAS(Generally recognized as safe)中文可称为公认安全,是美国食品药品监督管理局(FDA)针对化学物质或是食品添加物的分类,GRAS是指专家认为这种化学物质或是食品添加物是安全的,
  • 玻色气体玻色气体(英语:Bose gas)是一个经典的理想气体的量子力学模型。其概念相似于费米气体。结合萨特延德拉·玻色和爱因斯坦共同提出的理想的玻色气体,指的是在足够低的温度下〈接近
  • 狼毒花狼毒花(学名:),别名川狼毒、续毒、山萝卜、闷花头、热加巴、一扫光、搜山虎、一把香、药萝卜、生扯拢、红火柴头花、猴子根、断肠草,乃瑞香科狼毒属植物。狼毒的根系较大,生长于草
  • 默塞德县 (加利福尼亚州)默塞德县(英语:Merced County)是美国加州中谷地区的一县,地理位置大约在加州的正中央,旧金山湾区的东南方。总面积5,107平方公里,根据2000年人口普查,共有人口21万0554人。县府位于
  • 加扎利加扎利 (1136年-1206年) (阿拉伯语:أَبُو اَلْعِزِ بْنُ إسْماعِيلِ بْنُ الرِّزاز الجزري‎) 是一个杰出的阿拉伯博学者:兼伊