贝叶斯定理

✍ dations ◷ 2025-07-31 07:46:13 #贝氏定理

贝叶斯定理(英语:Bayes' theorem)是几率论中的一个定理,描述在已知一些条件下,某事件的发生几率。比如,如果已知某癌症与寿命有关,使用贝叶斯定理则可以透过得知某人年龄,来更加准确地计算出他罹患癌症的几率。

通常,事件A在事件B已发生的条件下发生的几率,与事件B在事件A已发生的条件下发生的几率是不一样的。然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述。贝叶斯公式的一个用途,即透过已知的三个几率而推出第四个几率。贝叶斯定理跟随机变量的条件几率以及边缘几率分布有关。

作为一个普遍的原理,贝叶斯定理对于所有几率的解释是有效的。这一定理的主要应用为贝叶斯推断,是推论统计学中的一种推断法。这一定理名称来自于托马斯.貝葉斯。

贝叶斯定理是关于随机事件A和B的条件概率的一则定理。

P ( A B ) = P ( B A ) P ( A ) P ( B ) {\displaystyle P(A\mid B)={\frac {P(B\mid A)P(A)}{P(B)}}} 发生的条件下事件发生的概率是:

其中 与的联合概率表示为 P ( A B ) {\displaystyle P(A\cap B)} 发生的条件下事件发生的概率

整理与合并这两个方程式,我们可以得到

这个引理有时称作概率乘法规则。上式两边同除以P(),若P()是非零的,我们可以得到贝叶斯定理:

贝叶斯定理通常可以再写成下面的形式:

其中是A的补集(即非A)。故上式亦可写成:

在更一般化的情况,假设{}是事件集合里的部分集合,对于任意的,贝叶斯定理可用下式表示:

贝叶斯定理亦可由相似率Λ和可能性表示:

其中

定义为B发生时,A发生的可能性(odds);

则是A发生的可能性。相似率(Likelihood ratio)则定义为:

贝叶斯定理亦可用于连续几率分布。由于概率密度函数严格上并非几率,由几率密度函数导出贝叶斯定理观念上较为困难(详细推导参阅)。贝叶斯定理与几率密度的关系是由求极限的方式建立:

全几率定理则有类似的论述:

如同离散的情况,公式中的每项均有名称。(, )是和的联合分布;(|)是给定=后,的后验分布;(|)= (|)是=后,的相似度函数(为的函数);()和()则是和的边际分布;()则是的先验分布。为了方便起见,这里的在这些专有名词中代表不同的函数(可以由引数的不同判断之)。

对于变数有二个以上的情况,贝叶斯定理亦成立。例如:

这个式子可以由套用多次二个变数的贝式定理及条件几率的定义导出:

一般化的方法则是利用联合几率去分解待求的条件几率,并对不加以探讨的变数积分(意即对欲探讨的变数计算边缘几率)。取决于不同的分解形式,可以证明某些积分必为1,因此分解形式可被简化。利用这个性质,贝叶斯定理的计算量可能可以大幅下降。贝氏网络为此方法的一个例子,贝氏网络指定数个变数的联合几率分布的分解型式,该几率分布满足下述条件:当其他变数的条件几率给定时,该变数的条件几率为一简单型式。

下面展示贝叶斯定理在检测吸毒者时的应用。假设一个常规的检测结果的灵敏度和特异度均为99%,即吸毒者每次检测呈阳性(+)的概率为99%。而不吸毒者每次检测呈阴性(-)的概率为99%。从检测结果的概率来看,检测结果是比较准确的,但是贝叶斯定理却可以揭示一个潜在的问题。假设某公司对全体雇员进行吸毒检测,已知0.5%的雇员吸毒。请问每位检测结果呈阳性的雇员吸毒的概率有多高?

令“D”为雇员吸毒事件,“N”为雇员不吸毒事件,“+”为检测呈阳性事件。可得

根据上述描述,我们可以计算某人检测呈阳性时确实吸毒的条件概率P(D|+):

尽管吸毒检测的准确率高达99%,但贝叶斯定理告诉我们:如果某人检测呈阳性,其吸毒的概率只有大约33%,不吸毒的可能性比较大。假阳性高,则检测的结果不可靠。这是因为该公司不吸毒的人数远远大于吸毒人数,所以即使不吸毒者被误检为阳性的概率仅为1%,其实际被误检人数还是很庞大。举例来说,若该公司总共有1000人(其中5人吸毒,995人不吸),不吸毒的人被检测出阳性的人数有大约10人(1% x 995),而吸毒被验出阳性的人数有5人(99% x 5),总共15人被验出阳性(10 + 5)。在这15人里面,只有约33%的人是真正有吸毒。所以贝叶斯定理可以揭露出此检测在这个案例中的不可靠。

同时,也因为不可靠的主因是不吸毒却被误检阳性的人数远多于吸毒被检测出来的人数(上述例子中10人 > 5 人),所以即使阳性检测灵敏度能到100%(即只要吸毒一定验出阳性),检测结果阳性的员工,真正吸毒的概率 P ( D | + ) {\displaystyle P(D|+)} 也只会提高到约33.4%。但如果灵敏度仍然是99%,而特异度却提高到99.5%(即不吸毒的人中,约0.5%会被误检为阳性),则检测结果阳性的员工,真正吸毒的概率可以提高到49.9%。

基于贝叶斯定理:即使100%的胰腺癌症患者都有某症状,而某人有同样的症状,绝对不代表该人有100%的概率得胰腺癌,还需要考虑先验概率,假设胰腺癌的发病率是十万分之一,而全球有同样症状的人有万分之一,则此人得胰腺癌的概率只有十分之一,90%的可能是是假阳性。

基于贝叶斯定理:假设100%的不良种子都表现A性状,而种子表现A性状,并不代表此种子100%是不良种子,还需要考虑先验概率,假设一共有6万颗不良种子,在种子中的比例是十万分之一(假设总共有60亿颗种子),假设所有种子中有1/3表现A性状(即20亿颗种子表现A性状),则此种子为不良种子的概率只有十万分之三。

相关

  • 巴雷斯特食道症巴雷斯特食道症(Barrett's esophagus)又称为巴洛氏食道症、巴雷特症候群、巴瑞特氏食道症,是一种食道细胞病变的症状,是远端食道黏膜的鳞状上皮细胞由柱状上皮细胞所取代的病变,
  • 特立尼达特立尼达(Trinidad,西班牙语中“圣三一”的意思)可指:
  • 1827年世界留存的最早照片是于1827年拍摄的。法国的贝诺特·富尔内隆发明了水轮机。
  • 古叙利亚语叙利亚语是中古阿拉姆语(属闪米特语族)的一种方言,在新月沃土的大部分地方都有分布。经典叙利亚语成为4-8世纪中东地区的书面语言,古典叙利亚语文学的作品就是以它为载体。现在
  • 谢章铤谢章铤(1820年-1903年),字枚如,福建长乐县人。晚清进士、诗人。祖籍浙江上虞县,生生于福州,幼年多病,父谢鹏年为县学生。咸丰元年(1851年),主讲漳州丹霞、芝山两书院。同治三年(1864年)中
  • 最佳男主角台湾金马奖最佳男主角是中华民国电影事业发展基金会颁发的一个年度奖项,旨在奖励在华语电影中有杰出表现的男性主演演员。奖项于1962年第1届金马奖首度颁发,获奖者是主演《手
  • 两双两双是篮球的术语,指一场比赛中球员的个人表现在以下任何两项中达到两位数:得分、篮板、助攻、抢断和盖帽。大多数的两双表现都是得分和篮板达到两位数,其次是得分和助攻。两双
  • 裨益知裨益知(Willard Livingstone Beard,1865年2月5日-1947年4月15日),美国传教士,曾受美国公理会差会差遣,在中国福州传教。1865年2月5日,裨益知出生于美国康涅狄格州谢尔顿,1887年就读于
  • 生态经济学 (学术期刊)《生态经济学》(Ecological Economics)是一份1989年起发行的学术期刊。该期刊每月出版一次,内容以生态经济学为主。目前,期刊的主编是美国达特茅斯学院的Richard B. Howarth。据
  • 伊斯兰教的神在伊斯兰教神学里,神(阿拉伯语:الله‎、安拉)是天下万物的全能全知造物主、支柱、命定者及裁决者。伊斯兰教强调神绝对是与生俱来的独一无二(讨黑德)、大慈大悲及无所不能。根