序拓扑

✍ dations ◷ 2025-12-10 08:15:20 #序拓扑

数学上,序拓扑是可以定义在任意全序集上的拓扑结构。 此为将实数的拓扑结构推广到任意全序集上所得。 具有此种拓扑结构的拓扑空间称为序空间。

如果 为全序集,则 的序拓扑由无界开区间

组成的准基生成,其中 取遍 的所有元素。这等价于,开区间

连同上述无界开区间组成序拓扑的一组基,换言之, 内的开集可写成该些开区间和无界开区间的(允许无穷)并。

若可对一个拓扑空间 的元素定义一个全序,使得该全序给出的序拓扑就是 自身的拓扑,则称 为可序化的 。 上的序拓扑使 成为一个完全正规的豪斯多夫空间。

 R, Q, Z, N 上的标准拓扑均为为序拓扑。

若 为 的子集,则 继承了 的全序。 因此具有序拓扑结构, 称为导出拓扑。作为 的子集, 还有一个子空间拓扑。子空间拓扑至少比诱导拓扑更精细,但一般情况下它们不相同。

例如,考虑有理数集的子集 ={-1} ∪ {1/}∈N 。 在子空间拓扑中,单元集 {-1} 在 中是开集,但在诱导拓扑中,任何含有 -1 的开集都必须包含 (除有限个以外)的所有元素。

虽然上述 ={-1} ∪ {1/}∈N 的子空间拓扑不是由 的诱导排序产生,它仍是 上的序拓扑;事实上,在子空间拓扑中,每一点都是孤立的(即,单元集 {} 是 的开集),故子空间拓扑是 上的离散拓扑(使得每一个子集都是 的开集),而任何集上的离散拓扑都是序拓扑。要定义 的全序使得其产生的序拓扑是 上的离散拓扑,只需修改 上的诱导排序,使得 -1 是最大的元素,并保持其他元素的大小次序。于是,在新的排序(称为 )中,有 1/ -1 对任意 ∈N 均成立。这样, 在 中给出的序拓扑是离散的。

以下将定义一个序空间 及其子集 ,使得不存在 上的全序给出一个序拓扑与 的子空间拓扑完全一样。换言之,尽管该子空间拓扑为某序空间的子空间拓扑,其不为序拓扑。

Z = { 1 } ( 0 , 1 ) {displaystyle Z={-1}cup (0,1)} 上的子空间拓扑不等于 上诱导的序拓扑。且可证,上的子空间拓扑不等于 上的任何序拓扑。

用反证法。假设 有一个严格全序 < ,使得 < 给出的序拓扑等于 的子空间拓扑(注意,并未假定 < 是 上的诱导排序,即 < 可以是任意一种新的全序)。区间也相应地按 < 理解,下同。 此外,如果 和 是集合,则 A < B {displaystyle A<B} 的元素 和 的元素 ,都有 a < b {displaystyle a<b} = {-1} 为单位开区间,则 连通。若 ∈ 且 <-1<则 ( , 1 ) {displaystyle (-infty ,-1)} 的分隔,矛盾。因此,<{-1} 或者 {-1}< 。不妨设 {-1}<因 {-1} 是 的开集,存在 中的一点 使得 (-1, ) 为空。又因 {-1}<-1 是唯一小于 的元素,因此 是 中最小的。但这样, {}= ∪ ,其中 和 是实轴上不相交的两个开集(从实轴上的开区间去除一点,剩下的是两个开区间)。由连通性,没有 中的点在排序后介于 的两点之间,也没有 中的点在排序后介于 的两点之间。因此,任何一个 < 或 <. 又不妨设 <. 如果 为 中任何一点,则 < ,且 (,) {displaystyle subseteq } . 又 (-1, ) = )显然,当 λ 为无穷序数时,情况较复杂;否则,对于有限的序数,其序拓扑是简单的离散拓扑。

当 λ = ω (最小的无穷序数)时,空间 则是单点紧化的 N 。

当 λ = ω1 (即所有可数序数组成的集合)时,情况有所不同。元素 ω1 是子集 不是第一可数的。然而,子空间 [0,ω1) 是第一可数的,因为唯一无可数邻域系的点是 ω1. 其他性质包括

邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 革兰氏阳性菌革兰氏阳性菌(英文:Gram Positive)是能够用革兰氏染色染成深蓝或紫色的细菌,而革兰氏阴性菌不能被染色(通常染作红色以对比)。它们细胞壁中含有较大量的肽聚糖,但经常缺乏革兰氏阴
  • 定位规则苯环的亲电取代定位效应(英语:Orientation effect of electrophilic aromatic directing groups)是指苯环上已有的取代基对亲电取代反应的影响。1895年霍里曼(Holleman)等从大量
  • 2015年希腊议会选举2015年希腊议会选举可以指:
  • WANNA.BWANNA.B(韩语:워너비),是韩国Zenith Media Contents(朝鲜语:제니스 미디어 콘텐츠)旗下的女子组合,解散前由世晋、路恩、琳雅、雅美、恩絮组成。2014年,Zenith Media Contents创立首
  • Kdeadminkdeadmin是一个提供系统管理方面的工具的软件包。 Akonadi · Decibel · Flake · KConfig XT · KJS · KDOM · KHTML · KIO · Kiosk · KIPI · KParts · K
  • 阿姆斯特朗大砲阿姆斯特朗炮或阿姆斯特朗大炮,阿姆斯特朗线膛后装炮〔Armstrong's Rifled Breech Loader〕,是出现在19世纪中期的后膛(英语:Breech-loading weapon)火炮,该大炮特点是,从火炮后方
  • 1986年12月逝世人物列表1986年逝世人物列表:1月 - 2月 - 3月 - 4月 - 5月 - 6月 - 7月 - 8月 - 9月 - 10月 - 11月 - 12月下面是1986年12月逝世的知名人士列表:
  • 练业坤练业坤(1827年-1863年),广西人,1862年战功封赠“梯王”,为“侍王”李世贤辖之大将,1860年攻安征征州(今歙县),占浙江严州(今梅城),封轮天义。1861年三月又随李世贤自婺源入江西,四月攻克景
  • 韩国河流列表由于韩国东部多山,大多数韩国河流都是由东向西流入黄海,少数河流流入韩国南部的朝鲜海峡,还有更少数的一些小河流是向东流的。 以下列表是以逆时针的顺序排列。
  • 弄蝶弄蝶(Silver-spotted Skipper,学名:)是弄蝶属中的一种弄蝶,也是弄蝶的模式种。寄主植物为禾本科的羊茅。主要分布在欧洲至安那托利亚,中国西部至日本亦有记录。成虫展翅30至40毫米,雌性稍大一点。