燕尾积分(Swallowtail Integral)是一种三阶多鞍点积分,其定义如下:p388
P ( x 1 , x 2 , x 3 ) = ∫ t = − ∞ ∞ e x p ( I ∗ ( t 5 + x ∗ t + x ∗ t 2 + x ∗ t 3 ) ) d t . {\displaystyle P(x_{1},x_{2},x_{3})=\int _{t=-\infty }^{\infty }exp(I*(t^{5}+x*t+x*t^{2}+x*t^{3}))\,dt.}
燕尾积分的分岔满足下列方程式:p781
x = 3 t 2 ( z + + 5 t 2 ) {\displaystyle x=3t^{2}(z++5t^{2})}
y = − t ( 3 z + 10 t 2 ) {\displaystyle y=-t(3z+10t^{2})}
燕尾积分的斯托克斯曲线(Stokes curve)满足下列方程式:p783
x = B + | y | 4 / 3 {\displaystyle x=B_{+}|y|^{4/3}}
x = B − | y | 4 / 3 {\displaystyle x=B_{-}|y|^{4/3}}
B + = 10 − 1 / 3 ( 2 x + 4 / 3 − 1 2 ( x + − 2 / 3 ) {\displaystyle B_{+}=10^{-1/3}(2x_{+}^{4/3}-{\frac {1}{2}}(x_{+}^{-2/3})}
B − = 10 − 1 / 3 ( 2 x − 4 / 3 − 1 2 ( x − − 2 / 3 ) {\displaystyle B_{-}=10^{-1/3}(2x_{-}^{4/3}-{\frac {1}{2}}(x_{-}^{-2/3})}
其中 x + , x − {\displaystyle x_{+},x_{-}} 是下列五阶代数方程的最小的两个解:
80 x 5 − 40 x 4 − 55 x 3 + 5 x 2 + 20 x − 1 = 0 {\displaystyle 80x^{5}-40x^{4}-55x^{3}+5x^{2}+20x-1=0} ,即
x + = 0.49730955169723075828 e − 1 {\displaystyle x_{+}=0.49730955169723075828e-1}
x − = 0.74104357073646523281 {\displaystyle x_{-}=0.74104357073646523281}