莱斯特·M·萨拉门(英语:Lester M. Salamon,1943年1月11日-2021年8月20日)曾担任约翰斯·霍普金斯大学教授,也是约翰斯·霍普金斯大学卫生与社会政策研究所公民社会研究中心主任。2021年8月20日死于胰脏癌,享年78岁。
首页 >
莱斯特·M·萨拉门
✍ dations ◷ 2025-09-14 02:01:30 #莱斯特·M·萨拉门
相关
- 嗅球嗅球(olfactory bulb)是脊椎动物前脑结构中参与嗅觉的部分,用于感知气味。对于大部分的脊椎动物而言,嗅球位在大脑的最前面,不过人类的嗅球位在大脑的内部。嗅球由筛骨的筛板固定
- 圆密尔圆密尔(英文:circular mil)是一种面积单位,等于一个直径为 1 密尔(千分之一英寸)的圆的面积,相当于 5.067×10(−4) 平方毫米。这个单位的制定和具有圆形截面的电线有关,使用这个单
- 南极罗斯属地罗斯属地(英语:Ross Dependency)是一块新西兰在南极洲(以及其它在南冰洋的分散领土)声称拥有的地区。这块领地的范围是从南极点出发的一个扇形,沿着160°东经线至150°经线之间向
- 故障分析故障分析,又称为故障诊断,是指为了确定故障原因以及如何防止其再次发生而收集和分析数据的过程。故障分析乃是制造行业众多分支之中的一门重要学科。例如,在电子行业,新产品开发
- 密度矩阵重整化群密度矩阵重整化群 (Density Matrix Renormalization Group),简称DMRG,是一种数值算法,于公元1992年由美国物理学家史提芬·怀特提出。密度矩阵重整化群是用来计算量子多体系统(
- 加纳各地区人类发展指数列表这是一个加纳各地区的人类发展指数列表,2018年的报告采用的是2017年的数据。
- 折纸公理折纸公理,又称藤田-羽鸟公理或藤田-贾斯汀公理,是折纸数学的基本公理。假定所有折纸操作均在理想的平面上进行,并且所有折痕都是直线,那么这些公理描述了通过折纸可能达成的所有数
- 纳维-斯托克斯存在性与光滑性纳维-斯托克斯存在性与光滑性(Navier–Stokes existence and smoothness)是有关纳维-斯托克斯方程其解的数学性质有关的数学问题,是美国克雷数学研究所在2000年提出的7个千禧年
- 中国电影导演协会2010年度表彰中国电影导演协会2010年度表彰是中国电影导演协会对2010年中国电影给予的表彰,于2010年12月20日公布提名名单,2011年1月13日晚在海南三亚市红树林酒店举行表彰大会。本届表彰
- 阿根廷-菲律宾关系阿根廷-菲律宾关系是指菲律宾和阿根廷之间历史上与现代的外交关系。两国于1948年8月21日建立公使级外交关系,1960年5月升格为大使级外交关系。阿根廷也是最早与菲律宾建立外交关系的国家之一。两国均为西班牙语学会联合会(英语:Association of Academies of the Spanish Language)、G20发展中国家、77国集团、东亚-拉丁美洲合作论坛成员国。菲律宾与阿根廷两国之间的联系可追溯至西班牙帝国在美洲和亚洲殖民统治的早期,当时两国皆为西班牙的殖民地。1780年8月,埃斯特