✍ dations ◷ 2025-11-13 01:02:44 #线性代数,矩阵论

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

在线性代数中,一个 n × n {\displaystyle n\times n} 是一个 n × m {\displaystyle n\times m} 是个 m × n {\displaystyle m\times n} 矩阵,则:

其中 A B {\displaystyle \mathbf {AB} } 是一个 n × n {\displaystyle n\times n} 矩阵,而 B A {\displaystyle \mathbf {BA} } 是一个 m × m {\displaystyle m\times m} 矩阵。

上述的性质可以由矩阵乘法的定义证明:

如果 A {\displaystyle \mathbf {A} } B {\displaystyle \mathbf {B} } 都是 n × n {\displaystyle n\times n} 的方形矩阵,那么它们的乘积 A B {\displaystyle \mathbf {AB} } B A {\displaystyle \mathbf {BA} } 也会是方形矩阵。因此,利用这个结果,可以推导出:计算若干个同样大小的方形矩阵的乘积的迹数时,可以循环改变乘积中方形矩阵相乘的顺序,而最终的结果不变。例如,有三个方形矩阵 A {\displaystyle \mathbf {A} } B {\displaystyle \mathbf {B} } C {\displaystyle \mathbf {C} } ,则:

但是要注意:

更一般地,乘积中的矩阵不一定要是方形矩阵,只要某一个循环改变后的乘积依然存在,那么得到的迹数依然会和原来的迹数相同。

另外,如果 A {\displaystyle \mathbf {A} } B {\displaystyle \mathbf {B} } C {\displaystyle \mathbf {C} } 是同样大小的方阵而且还是对称矩阵的话,那么其乘积的迹数不只在循环排列下不会改变,而且在所有的排列下都不会改变:

迹数拥有相似不变性。如果矩阵 A {\displaystyle \mathbf {A} } B {\displaystyle \mathbf {B} } 相似的话,它们会有相同的迹。这一性质可使上面讲过的循环性质来证明:

一个 n × n {\displaystyle n\times n} 的方形矩阵 A {\displaystyle \mathbf {A} } 的特征多项式 P A ( λ ) {\displaystyle P_{A}(\lambda )} 定义为 A {\displaystyle \mathbf {A} } 减去 λ {\displaystyle \lambda } 倍的单位矩阵后所得到的矩阵的行列式:

特征多项式是一个关于 λ {\displaystyle \lambda } 的n次多项式,它的常数项是 A {\displaystyle \mathbf {A} } 的行列式的值,最高次项是 ( 1 ) n λ n {\displaystyle (-1)^{n}\lambda ^{n}} ,而接下来的n-1次项就是 ( 1 ) n 1 t r ( A ) λ n 1 {\displaystyle (-1)^{n-1}\mathrm {tr} (\mathbf {A} )\lambda ^{n-1}} ,也就是说:

当系数域是代数闭域时(否则可以将系数域扩展到其代数闭包上来看),特征多项式 P A ( λ ) {\displaystyle P_{A}(\lambda )} 有n个根,它可以表达成:

其中的 r 1 , r 2 r k {\displaystyle r_{1},r_{2}\cdots r_{k}} 是特征多项式的不同的根,而 α 1 , α 2 α k {\displaystyle \alpha _{1},\alpha _{2}\cdots \alpha _{k}} 是这些根在特征多项式里的重数,称为代数重数。显然,所有代数重数加起来等于n。一方面,特征多项式的根就是矩阵的特征值,而另一方面,借由根与多项式系数的关系可以知道:特征多项式的所有的根加起来等于矩阵的迹数。所以矩阵的迹数是矩阵的所有特征值(按照代数重数计算)的和。

如果将矩阵写成它的若尔当标准型的话,也可以看出这一点,因为若尔当标准型的特征多项式的所有的根(包括重根)就是对角线上的所有元素。

如果不区分相同或不同的特征值的话,上述关系也可以写成:

其中的 λ 1 , λ 2 λ n {\displaystyle \lambda _{1},\lambda _{2}\cdots \lambda _{n}} 是矩阵的特征值。而且有:

设系数域为 K {\displaystyle \mathbb {K} } V {\displaystyle \mathbb {V} } 是一个有限维的向量空间,维数是n。给定任一线性映射 f : V V {\displaystyle f:\mathbb {V} \rightarrow \mathbb {V} } ,可以定义此一映射的迹数为其变换矩阵的迹,即选定 V {\displaystyle \mathbb {V} } 的一个基底并用对应于此基底的一个方形矩阵描述 f {\displaystyle f} ,再定义这个方形矩阵的迹数为 f {\displaystyle f} 的迹数。这个定义下 f {\displaystyle f} 的迹数和所选取的基无关:只需要注意到不同的基底的选取实际上等价于对变换矩阵做一次相似变换,而两个相似的矩阵的迹数是一样的。因此这样的定义是自洽的。

另外一种定义涉及到行列式的性质。考虑 V {\displaystyle \mathbb {V} } 的一个基底 B = ( e 1 , e 2 , , e n ) {\displaystyle {\mathcal {B}}=(e_{1},e_{2},\cdots ,e_{n})} ,以及函数:

根据行列式理论,这个函数也是一个行列式型的函数,也就是说存在一个只取决于 f {\displaystyle f} 的量 S p ( f ) {\displaystyle \mathrm {Sp} (f)} ,使得

可以证明,这个纯量 S p ( f ) {\displaystyle \mathrm {Sp} (f)} 就等于之前定义的 f {\displaystyle f} 的迹数。

由迹的定义可知迹可以看作是矩阵的实标量函数,所以我们可以通过求实标量函数的梯度来求迹的梯度。

相关

  • 中东呼吸综合症中东呼吸综合征(英文缩写:MERS)是一种由中东呼吸综合征冠状病毒(前称“2012年新型冠状病毒”)所引起的新型人畜共患的呼吸系统传染病。患者常见的症状为发热、咳嗽、喉咙痛或胸痛
  • 英国药典《英国药典》(British Pharmacopoeia)是英国药品的权威标准集录。该药典在英国药品与保健品管理局(Medicines and Healthcare products Regulatory Agency)主持下编纂,是英国国内
  • 管理和预算办公室美国行政管理和预算局(Office of Management and Budget, OMB),美国总统办事机构之一,是美国总统维持对政府财政计划控制的机关。1921年,《美国预算和会计法》规定美国总统应向
  • 法德关系法德关系是指法国和德国间的外交关系。历史上,法国和德国源自同一个国家:法兰克帝国。843年法兰克帝国分裂后产生的西法兰克王国和东法兰克王国最终各自演变成为“ 法兰西共
  • 阿米塔布·巴沙坎阿米塔·巴强(英语:Amitabh Bachchan;.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gent
  • 尾索动物见内文被囊动物亚门(学名:Tunicata),旧称尾索动物亚门(Urochordata),是脊索动物门的一个亚门。本纲动物脊索和背神经管仅存于幼体尾部,成体退化消失。身体表面披有一层棕褐色植物性
  • 水化在化学中,水合反应(hydration reaction),也叫作水化,是一种化学反应,其中物质与水结合。 在有机化学中,将水加入不饱和底物中,该底物通常是烯烃或炔烃。 这种类型的反应在工业上用于
  • 庐山声明《庐山声明》为1937年7月17日由蒋中正在江西庐山图书馆发表的声明,表示对侵华日军挑衅的退让底线。这一声明象征着第二次中日战争全面开始。1937年7月7日,卢沟桥事变发生。随
  • 迪奥斯达多·马卡帕加尔迪奥斯达多·潘甘·马卡帕加尔(Diosdado Pangan Macapagal,1910年9月28日-1997年4月21日),菲律宾政治家,1957年-1961年的第6任菲律宾副总统及1961年-1965年第9任菲律宾总统。马卡
  • 英国宇航英国宇航公司(英语:British Aerospace),简称BAe,是英国一家飞机制造商、武器及防御系统承包商,总部位于汉普郡法恩堡的航空科技中心。1999年,英国宇航公司收购了英国通用电气旗下马