✍ dations ◷ 2025-06-07 21:07:13 #线性代数,矩阵论

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

在线性代数中,一个 n × n {\displaystyle n\times n} 是一个 n × m {\displaystyle n\times m} 是个 m × n {\displaystyle m\times n} 矩阵,则:

其中 A B {\displaystyle \mathbf {AB} } 是一个 n × n {\displaystyle n\times n} 矩阵,而 B A {\displaystyle \mathbf {BA} } 是一个 m × m {\displaystyle m\times m} 矩阵。

上述的性质可以由矩阵乘法的定义证明:

如果 A {\displaystyle \mathbf {A} } B {\displaystyle \mathbf {B} } 都是 n × n {\displaystyle n\times n} 的方形矩阵,那么它们的乘积 A B {\displaystyle \mathbf {AB} } B A {\displaystyle \mathbf {BA} } 也会是方形矩阵。因此,利用这个结果,可以推导出:计算若干个同样大小的方形矩阵的乘积的迹数时,可以循环改变乘积中方形矩阵相乘的顺序,而最终的结果不变。例如,有三个方形矩阵 A {\displaystyle \mathbf {A} } B {\displaystyle \mathbf {B} } C {\displaystyle \mathbf {C} } ,则:

但是要注意:

更一般地,乘积中的矩阵不一定要是方形矩阵,只要某一个循环改变后的乘积依然存在,那么得到的迹数依然会和原来的迹数相同。

另外,如果 A {\displaystyle \mathbf {A} } B {\displaystyle \mathbf {B} } C {\displaystyle \mathbf {C} } 是同样大小的方阵而且还是对称矩阵的话,那么其乘积的迹数不只在循环排列下不会改变,而且在所有的排列下都不会改变:

迹数拥有相似不变性。如果矩阵 A {\displaystyle \mathbf {A} } B {\displaystyle \mathbf {B} } 相似的话,它们会有相同的迹。这一性质可使上面讲过的循环性质来证明:

一个 n × n {\displaystyle n\times n} 的方形矩阵 A {\displaystyle \mathbf {A} } 的特征多项式 P A ( λ ) {\displaystyle P_{A}(\lambda )} 定义为 A {\displaystyle \mathbf {A} } 减去 λ {\displaystyle \lambda } 倍的单位矩阵后所得到的矩阵的行列式:

特征多项式是一个关于 λ {\displaystyle \lambda } 的n次多项式,它的常数项是 A {\displaystyle \mathbf {A} } 的行列式的值,最高次项是 ( 1 ) n λ n {\displaystyle (-1)^{n}\lambda ^{n}} ,而接下来的n-1次项就是 ( 1 ) n 1 t r ( A ) λ n 1 {\displaystyle (-1)^{n-1}\mathrm {tr} (\mathbf {A} )\lambda ^{n-1}} ,也就是说:

当系数域是代数闭域时(否则可以将系数域扩展到其代数闭包上来看),特征多项式 P A ( λ ) {\displaystyle P_{A}(\lambda )} 有n个根,它可以表达成:

其中的 r 1 , r 2 r k {\displaystyle r_{1},r_{2}\cdots r_{k}} 是特征多项式的不同的根,而 α 1 , α 2 α k {\displaystyle \alpha _{1},\alpha _{2}\cdots \alpha _{k}} 是这些根在特征多项式里的重数,称为代数重数。显然,所有代数重数加起来等于n。一方面,特征多项式的根就是矩阵的特征值,而另一方面,借由根与多项式系数的关系可以知道:特征多项式的所有的根加起来等于矩阵的迹数。所以矩阵的迹数是矩阵的所有特征值(按照代数重数计算)的和。

如果将矩阵写成它的若尔当标准型的话,也可以看出这一点,因为若尔当标准型的特征多项式的所有的根(包括重根)就是对角线上的所有元素。

如果不区分相同或不同的特征值的话,上述关系也可以写成:

其中的 λ 1 , λ 2 λ n {\displaystyle \lambda _{1},\lambda _{2}\cdots \lambda _{n}} 是矩阵的特征值。而且有:

设系数域为 K {\displaystyle \mathbb {K} } V {\displaystyle \mathbb {V} } 是一个有限维的向量空间,维数是n。给定任一线性映射 f : V V {\displaystyle f:\mathbb {V} \rightarrow \mathbb {V} } ,可以定义此一映射的迹数为其变换矩阵的迹,即选定 V {\displaystyle \mathbb {V} } 的一个基底并用对应于此基底的一个方形矩阵描述 f {\displaystyle f} ,再定义这个方形矩阵的迹数为 f {\displaystyle f} 的迹数。这个定义下 f {\displaystyle f} 的迹数和所选取的基无关:只需要注意到不同的基底的选取实际上等价于对变换矩阵做一次相似变换,而两个相似的矩阵的迹数是一样的。因此这样的定义是自洽的。

另外一种定义涉及到行列式的性质。考虑 V {\displaystyle \mathbb {V} } 的一个基底 B = ( e 1 , e 2 , , e n ) {\displaystyle {\mathcal {B}}=(e_{1},e_{2},\cdots ,e_{n})} ,以及函数:

根据行列式理论,这个函数也是一个行列式型的函数,也就是说存在一个只取决于 f {\displaystyle f} 的量 S p ( f ) {\displaystyle \mathrm {Sp} (f)} ,使得

可以证明,这个纯量 S p ( f ) {\displaystyle \mathrm {Sp} (f)} 就等于之前定义的 f {\displaystyle f} 的迹数。

由迹的定义可知迹可以看作是矩阵的实标量函数,所以我们可以通过求实标量函数的梯度来求迹的梯度。

相关

  • 氧化物氧化物,是负价氧和另外一个化学元素组成的二元化合物,例如氧化铁(Fe2O3)或氧化铝(Al2O3),通常经由氧化反应产生。氧化物在地球的地壳极度普遍,而在宇宙的固体中也是如此。氧离子(O2−
  • 饮食文化饮食文化,是人类不断开拓食源、开发食品、制造食器、消费食物的过程,以及以饮食为基础的习俗、思想和哲学,即由人们在饮食活动中的方式、过程和功能等结构组成的全部食事的总和
  • 蓝湖蓝湖可以指:
  • 101号美国国道101号美国国道(英语:U.S. Route 101)俄勒冈州段是俄勒冈州一条南北方向的美国国道。全长347英里。
  • 大型都会公园台北市战前规划的大型都会公园是指台湾日治时期的台北市在第二次世界大战结束前,所规划的十七座大型都会公园。目前有七座完全辟建,虽然称为完全辟建,但仍有部分土地作为停车场
  • 受质底物(英语:substrate)在生物化学领域指参与生化反应的物质,可为化学元素、分子或化合物,经酶作用可形成产物。一个生化反应的底物往往同时也是另一个化学反应的产物。
  • 反色情女性主义反色情女性主义(英语:Anti-pornography Feminism/Feminist views of pornography)做为一个女性主义流派,认为色情是父权与资本主义下的产物,并且有支配关系是一种强暴文化。反色
  • 八道江镇白山市可以指:
  • 工人委员会工人委员会是一种经济合作组织形式,是指在一个单独的企业或工作环境(如工厂、学校或农场)中,当地工人集体管控这一实体。形式的核心即是通过临时且可随时撤换的代表管理。在这拥
  • 有机磷化合物有机磷化合物指含有碳-磷键的有机化合物,它们主要用于虫害控制以作为长期存在于环境中的氯化烃、滴滴涕等替代物。研究有机磷化合物性质和反应的有机化学分支称作有机磷化学