相互作用绘景

✍ dations ◷ 2025-10-16 18:52:24 #相互作用绘景
在量子力学里,相互作用绘景(interaction picture),是在薛定谔绘景与海森堡绘景之间的一种表述,为纪念物理学者保罗·狄拉克而又命名为狄拉克绘景。在这绘景里,描述量子系统的态矢量与表达可观察量的算符都会随着时间流易而演化。有些实际案例会涉及到因相互作用而使得量子态与可观察量发生改变,这类案例通常会使用狄拉克绘景。狄拉克绘景与薛定谔绘景、海森堡绘景不同。在薛定谔绘景里,描述量子系统的态矢量随着时间流易而演化。在海森堡绘景里,表达可观察量的算符会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理行为。:80-84为了便利分析,位于下标的符号 H {displaystyle {}_{mathcal {H}}} 、 I {displaystyle {}_{mathcal {I}}} 、 S {displaystyle {}_{mathcal {S}}} 分别标记海森堡绘景、狄拉克绘景、薛定谔绘景。通过对于基底的一种幺正变换(英语:unitary transformation),算符和态矢量在狄拉克绘景里的形式与在薛定谔绘景里的形式相关联。在量子力学里,对于大多数案例的哈密顿量,通常无法找到薛定谔方程的精确解,只有少数案例可以找到精确解。因此,为了要能够解析其它没有精确解的案例,必须将薛定谔绘景里的哈密顿量 H S {displaystyle H_{mathcal {S}},!} 分成两个部分,:337-339其中, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 有精确解,有广泛知悉的物理行为,而 H 1 , S {displaystyle H_{1,,{mathcal {S}}},!} 则通常没有精确解,是对于系统的摄动。假若哈密顿量 H S {displaystyle H_{mathcal {S}},!} 含时(例如,感受到时变外电场作用的量子系统,其哈密顿量会含时),则通常会将显性含时部分放在 H 1 , S {displaystyle H_{1,,{mathcal {S}}},!} 里。这样, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时,而时间演化算符 U ( t ) {displaystyle U(t),!} 的公式可以简单地表示为其中, t {displaystyle t,!} 是时间。假若对于某些案例, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 应该设定为含时,则时间演化算符的公式会变得较为复杂::70-71本条目以下内容假设 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时。在狄拉克绘景里,态矢量 | ψ ( t ) ⟩ I {displaystyle |psi (t)rangle _{mathcal {I}},!} 定义为其中, | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}},!} 是在薛定谔绘景里的态矢量。由于在薛定谔绘景里, 态矢量 | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}},!} 与时间的关系为所以,在 H 0 , S , H S {displaystyle H_{0,{mathcal {S}}},H_{mathcal {S}}} 对易的条件下,可以有在狄拉克绘景里的算符 A I ( t ) {displaystyle A_{mathcal {I}}(t),!} 定义为其中, A S ( t ) {displaystyle A_{mathcal {S}}(t),!} 是在薛定谔绘景里对应的算符。(请注意, A S ( t ) {displaystyle A_{mathcal {S}}(t),!} 通常不含时间,可以重写为 A S {displaystyle A_{mathcal {S}},!} 。反例,对于时变外电场的状况,哈密顿算符 H S ( t ) {displaystyle H_{mathcal {S}}(t),!} 含时。)假若 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时,则 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 e i H 0 , S t / ℏ {displaystyle e^{iH_{0,,{mathcal {S}}},t/hbar },!} 对易,不论在薛定谔绘景里或在狄拉克绘景里, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 的形式都是一样:所以,算符 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 都可以简略标记为 H 0 {displaystyle H_{0},!} ,不会造成歧意。哈密顿算符的摄动成分 H 1 , I {displaystyle H_{1,,{mathcal {I}}},!} 是除非对易关系式 [ H 1 , S , H 0 , S ] = 0 {displaystyle =0,!} ,在狄拉克绘景里, H 1 , I {displaystyle H_{1,,{mathcal {I}}},!} 含时。与算符类似,在薛定谔绘景里的密度矩阵也可以变换到在狄拉克绘景里。设定 ρ I {displaystyle rho _{mathcal {I}},!} 和 ρ S {displaystyle rho _{mathcal {S}},!} 分别为在狄拉克绘景里和在薛定谔绘景里的密度矩阵。假若,处于量子态 | ψ n ⟩ {displaystyle |psi _{n}rangle ,!} 的概率是 p n {displaystyle p_{n},!} ,则本文以下内容,算符 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 都简略标记为 H 0 {displaystyle H_{0},!} 。:337-339从态矢量的定义式,可以得到态矢量对于时间的导数是将算符的定义式代入,可以得到这是施温格-朝永振一郎方程(英语:Schwinger-Tomonaga equation)的一个较为简单的形式。:153-155假若算符 A S {displaystyle A_{mathcal {S}},!} 不含时,则其对应的 A I ( t ) {displaystyle A_{mathcal {I}}(t),!} 的时间演化为这与在海森堡绘景里,算符 A H ( t ) {displaystyle A_{mathcal {H}}(t),!} 的时间演化类似:应用施温格-朝永振一郎方程于密度矩阵,则可得到应用狄拉克绘景的目的是促使 H 0 {displaystyle H_{0},!} 与时间无关,只有 H 1 , I ( t ) {displaystyle H_{1,,{mathcal {I}}}(t),!} 与时间有关,也只有 H 1 , I ( t ) {displaystyle H_{1,,{mathcal {I}}}(t),!} 控制态矢量随时间流易的演化行为。假若 H 0 {displaystyle H_{0},!} 有精确解,而 H 1 , S ( t ) {displaystyle H_{1,,{mathcal {S}}}(t),!} 是一个弱小的摄动,则可很便利地采用狄拉克绘景,使用时变摄动理论来计算 H 1 , S ( t ) {displaystyle H_{1,,{mathcal {S}}}(t),!} 所产生对于整个系统的影响。例如,在费米黄金定则的导引里:359–363,或在推导戴森级数(英语:Dyson series)时:355–357,通常都会用到狄拉克绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • 美国西南方美国西南部(Southwestern United States、American Southwest或 The Southwest),是美国西部的一个区域,比北部温暖,但比东部干燥。西南地区的人口分布比邻近区域较为稀疏(以至于其
  • 科罗拉多州科罗拉多州(英语:State of Colorado),简称科州,是美国西部的一州,此州最著名的是拥有洛矶山脉的最高峰,地形从东侧的平原陡然升高为西侧峻岭,地理景观十分壮丽。该州首府兼最大城为
  • 椭圆形在数学中,椭圆是平面上到两个相异固定点的距离之和为常数的点之轨迹。根据该定义,可以用手绘椭圆:先准备一条线,将这条线的两端各绑在固定的点上(这两个点就当作是椭圆的两个焦点
  • “你”于2006年获选为《时代》杂志的年度风云人物。《时代》把“你”选为年度风云人物,原因是数以百万计的人在维基百科、YouTube、MySpace、Facebook、亚马逊网络书店、GNU/
  • 统计机器翻译统计机器翻译(英语:Statistical Machine Translation,简写为SMT)是机器翻译的一种,也是当前非限定领域机器翻译中性能较佳的一种方法。统计机器翻译的基本思想是通过对大量的平行
  • 能量守恒能量守恒定律(英语:law of conservation of energy)阐明,孤立系统的总能量 E {\displaystyle E} 保持不变。如果一个系统处于孤立
  • 文理中学文理中学(德语:Gymnasium),部分地区也称lyzeum,是中等学校教育体系中的一种为进入大学准备的学校。何时进入这种学校,以及这种学校的学习时长,依不同的教育体制而有所区别。在德语
  • 蓝瓶实验蓝瓶实验(英语:Blue bottle),一种常见的化学示范实验。在容器中加入少量氢氧化钠和葡萄糖,加水溶解。再加入少量亚甲基蓝并摇晃,此时溶液呈蓝色。静置一段时间后,蓝色消失,溶液变为
  • NaHSOsub3/sub亚硫酸氢钠(化学式:NaHSO3),白色结晶性粉末,有二氧化硫的气味,可溶于水,也微溶于醇。其在空气中易被氧化为硫酸盐。亚硫酸氢钠与活泼醛、酮发生加成反应,生成亚硫酸氢钠加合物。该反
  • 北美短叶松北美短叶松(学名:Pinus banksiana),又名班克松、短叶松,是松科松属的植物。原产北美,现在中国大陆的青岛、庐山、抚顺、熊岳、南京、北京等地已由人工引种栽培。