相互作用绘景

✍ dations ◷ 2025-04-04 11:24:17 #相互作用绘景
在量子力学里,相互作用绘景(interaction picture),是在薛定谔绘景与海森堡绘景之间的一种表述,为纪念物理学者保罗·狄拉克而又命名为狄拉克绘景。在这绘景里,描述量子系统的态矢量与表达可观察量的算符都会随着时间流易而演化。有些实际案例会涉及到因相互作用而使得量子态与可观察量发生改变,这类案例通常会使用狄拉克绘景。狄拉克绘景与薛定谔绘景、海森堡绘景不同。在薛定谔绘景里,描述量子系统的态矢量随着时间流易而演化。在海森堡绘景里,表达可观察量的算符会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理行为。:80-84为了便利分析,位于下标的符号 H {displaystyle {}_{mathcal {H}}} 、 I {displaystyle {}_{mathcal {I}}} 、 S {displaystyle {}_{mathcal {S}}} 分别标记海森堡绘景、狄拉克绘景、薛定谔绘景。通过对于基底的一种幺正变换(英语:unitary transformation),算符和态矢量在狄拉克绘景里的形式与在薛定谔绘景里的形式相关联。在量子力学里,对于大多数案例的哈密顿量,通常无法找到薛定谔方程的精确解,只有少数案例可以找到精确解。因此,为了要能够解析其它没有精确解的案例,必须将薛定谔绘景里的哈密顿量 H S {displaystyle H_{mathcal {S}},!} 分成两个部分,:337-339其中, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 有精确解,有广泛知悉的物理行为,而 H 1 , S {displaystyle H_{1,,{mathcal {S}}},!} 则通常没有精确解,是对于系统的摄动。假若哈密顿量 H S {displaystyle H_{mathcal {S}},!} 含时(例如,感受到时变外电场作用的量子系统,其哈密顿量会含时),则通常会将显性含时部分放在 H 1 , S {displaystyle H_{1,,{mathcal {S}}},!} 里。这样, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时,而时间演化算符 U ( t ) {displaystyle U(t),!} 的公式可以简单地表示为其中, t {displaystyle t,!} 是时间。假若对于某些案例, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 应该设定为含时,则时间演化算符的公式会变得较为复杂::70-71本条目以下内容假设 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时。在狄拉克绘景里,态矢量 | ψ ( t ) ⟩ I {displaystyle |psi (t)rangle _{mathcal {I}},!} 定义为其中, | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}},!} 是在薛定谔绘景里的态矢量。由于在薛定谔绘景里, 态矢量 | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}},!} 与时间的关系为所以,在 H 0 , S , H S {displaystyle H_{0,{mathcal {S}}},H_{mathcal {S}}} 对易的条件下,可以有在狄拉克绘景里的算符 A I ( t ) {displaystyle A_{mathcal {I}}(t),!} 定义为其中, A S ( t ) {displaystyle A_{mathcal {S}}(t),!} 是在薛定谔绘景里对应的算符。(请注意, A S ( t ) {displaystyle A_{mathcal {S}}(t),!} 通常不含时间,可以重写为 A S {displaystyle A_{mathcal {S}},!} 。反例,对于时变外电场的状况,哈密顿算符 H S ( t ) {displaystyle H_{mathcal {S}}(t),!} 含时。)假若 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时,则 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 e i H 0 , S t / ℏ {displaystyle e^{iH_{0,,{mathcal {S}}},t/hbar },!} 对易,不论在薛定谔绘景里或在狄拉克绘景里, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 的形式都是一样:所以,算符 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 都可以简略标记为 H 0 {displaystyle H_{0},!} ,不会造成歧意。哈密顿算符的摄动成分 H 1 , I {displaystyle H_{1,,{mathcal {I}}},!} 是除非对易关系式 [ H 1 , S , H 0 , S ] = 0 {displaystyle =0,!} ,在狄拉克绘景里, H 1 , I {displaystyle H_{1,,{mathcal {I}}},!} 含时。与算符类似,在薛定谔绘景里的密度矩阵也可以变换到在狄拉克绘景里。设定 ρ I {displaystyle rho _{mathcal {I}},!} 和 ρ S {displaystyle rho _{mathcal {S}},!} 分别为在狄拉克绘景里和在薛定谔绘景里的密度矩阵。假若,处于量子态 | ψ n ⟩ {displaystyle |psi _{n}rangle ,!} 的概率是 p n {displaystyle p_{n},!} ,则本文以下内容,算符 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 都简略标记为 H 0 {displaystyle H_{0},!} 。:337-339从态矢量的定义式,可以得到态矢量对于时间的导数是将算符的定义式代入,可以得到这是施温格-朝永振一郎方程(英语:Schwinger-Tomonaga equation)的一个较为简单的形式。:153-155假若算符 A S {displaystyle A_{mathcal {S}},!} 不含时,则其对应的 A I ( t ) {displaystyle A_{mathcal {I}}(t),!} 的时间演化为这与在海森堡绘景里,算符 A H ( t ) {displaystyle A_{mathcal {H}}(t),!} 的时间演化类似:应用施温格-朝永振一郎方程于密度矩阵,则可得到应用狄拉克绘景的目的是促使 H 0 {displaystyle H_{0},!} 与时间无关,只有 H 1 , I ( t ) {displaystyle H_{1,,{mathcal {I}}}(t),!} 与时间有关,也只有 H 1 , I ( t ) {displaystyle H_{1,,{mathcal {I}}}(t),!} 控制态矢量随时间流易的演化行为。假若 H 0 {displaystyle H_{0},!} 有精确解,而 H 1 , S ( t ) {displaystyle H_{1,,{mathcal {S}}}(t),!} 是一个弱小的摄动,则可很便利地采用狄拉克绘景,使用时变摄动理论来计算 H 1 , S ( t ) {displaystyle H_{1,,{mathcal {S}}}(t),!} 所产生对于整个系统的影响。例如,在费米黄金定则的导引里:359–363,或在推导戴森级数(英语:Dyson series)时:355–357,通常都会用到狄拉克绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • 猪厕猪厕,古称圂厕、圂、豕牢、溷轩,又称带厕猪圈、连茅圈、茅圈,是指在同一地同时作养猪和厕所之用,猪厕所养的猪往往以人的粪便为食粮,亚洲不少地区都有使用猪厕的传统,至今仍可在中
  • 磁化强度磁化强度(英语:magnetization),又称磁化矢量,是衡量物体的磁性的一个物理量,定义为单位体积的磁偶极矩,如下方程:其中, M
  • 柠檬酸盐柠檬酸,化学式为 C6H8O7,(英语:Citric Acid,亦称为枸橼酸)它包括3个羧基(R-COOH)基团。是一种中强度有机酸,这是自然在柑橘类水果中产生的一种天然防腐剂,也是食物和饮料中的酸味添加
  • 种加词种加词(英文:specific epithet),又称种小名,指双名法中物种名的第二部分,另一部分为属名。在植物学名命名法中,“种名”指的是物种的完整学名,而在动物学名命名法中,“种名”既可以指
  • 岸本忠三岸本忠三(日语:岸本 忠三/きしもと ただみつ Kishimoto Tadamitsu ?,1939年5月7日-),日本免疫学家,美国国家科学院外籍院士,日本学士院会员。第14任大阪大学校长,现任阪大名誉教授。
  • 维莱科特雷法令维莱科特雷法令(法语:Ordonnance de Villers-Cotterêts)由法国国王弗朗索瓦一世于1539年8月10日至25日期间在埃纳省小城维莱科特雷颁布。同年9月6日,巴黎高等法院将其载入法律
  • 武王周武王(?-?),姬姓,名发,谥武,曰名为珷帝日丁,西周第一代天子,西周时代青铜器铭文称其为珷。是西伯昌与太姒的嫡次子,其正妻为邑姜,西周的创建者。夏商周断代工程断代其在位时间为前1046年
  • 威格夫威格夫(Khutawyre Wegaf或者Ugaf)是埃及第十二王朝的最后一位法老。Kim Ryholt认为Sekhemre Khutawy是阿蒙涅姆赫特四世之子,约公元前1802年——约公元前1786年在位。
  • 等离子切割等离子切割是一种利用加速过的热等离子喷流切割电导体的加工程序。被切割的材料通常是钢、白铁、铝、黄铜与铜。主要应用产业有金属制造、修车、工业化建筑、打捞残骸或报废
  • 试爆一枚核子武器2006年朝鲜核试验或称朝鲜核子试爆,为朝鲜民主主义人民共和国首次核试验,据传试爆于当地时间2006年10月9日上午10时35分27秒,时间大约在朝鲜官方宣布准备核试验的一周之后。试