相互作用绘景

✍ dations ◷ 2025-04-02 12:43:29 #相互作用绘景
在量子力学里,相互作用绘景(interaction picture),是在薛定谔绘景与海森堡绘景之间的一种表述,为纪念物理学者保罗·狄拉克而又命名为狄拉克绘景。在这绘景里,描述量子系统的态矢量与表达可观察量的算符都会随着时间流易而演化。有些实际案例会涉及到因相互作用而使得量子态与可观察量发生改变,这类案例通常会使用狄拉克绘景。狄拉克绘景与薛定谔绘景、海森堡绘景不同。在薛定谔绘景里,描述量子系统的态矢量随着时间流易而演化。在海森堡绘景里,表达可观察量的算符会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理行为。:80-84为了便利分析,位于下标的符号 H {displaystyle {}_{mathcal {H}}} 、 I {displaystyle {}_{mathcal {I}}} 、 S {displaystyle {}_{mathcal {S}}} 分别标记海森堡绘景、狄拉克绘景、薛定谔绘景。通过对于基底的一种幺正变换(英语:unitary transformation),算符和态矢量在狄拉克绘景里的形式与在薛定谔绘景里的形式相关联。在量子力学里,对于大多数案例的哈密顿量,通常无法找到薛定谔方程的精确解,只有少数案例可以找到精确解。因此,为了要能够解析其它没有精确解的案例,必须将薛定谔绘景里的哈密顿量 H S {displaystyle H_{mathcal {S}},!} 分成两个部分,:337-339其中, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 有精确解,有广泛知悉的物理行为,而 H 1 , S {displaystyle H_{1,,{mathcal {S}}},!} 则通常没有精确解,是对于系统的摄动。假若哈密顿量 H S {displaystyle H_{mathcal {S}},!} 含时(例如,感受到时变外电场作用的量子系统,其哈密顿量会含时),则通常会将显性含时部分放在 H 1 , S {displaystyle H_{1,,{mathcal {S}}},!} 里。这样, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时,而时间演化算符 U ( t ) {displaystyle U(t),!} 的公式可以简单地表示为其中, t {displaystyle t,!} 是时间。假若对于某些案例, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 应该设定为含时,则时间演化算符的公式会变得较为复杂::70-71本条目以下内容假设 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时。在狄拉克绘景里,态矢量 | ψ ( t ) ⟩ I {displaystyle |psi (t)rangle _{mathcal {I}},!} 定义为其中, | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}},!} 是在薛定谔绘景里的态矢量。由于在薛定谔绘景里, 态矢量 | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}},!} 与时间的关系为所以,在 H 0 , S , H S {displaystyle H_{0,{mathcal {S}}},H_{mathcal {S}}} 对易的条件下,可以有在狄拉克绘景里的算符 A I ( t ) {displaystyle A_{mathcal {I}}(t),!} 定义为其中, A S ( t ) {displaystyle A_{mathcal {S}}(t),!} 是在薛定谔绘景里对应的算符。(请注意, A S ( t ) {displaystyle A_{mathcal {S}}(t),!} 通常不含时间,可以重写为 A S {displaystyle A_{mathcal {S}},!} 。反例,对于时变外电场的状况,哈密顿算符 H S ( t ) {displaystyle H_{mathcal {S}}(t),!} 含时。)假若 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时,则 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 e i H 0 , S t / ℏ {displaystyle e^{iH_{0,,{mathcal {S}}},t/hbar },!} 对易,不论在薛定谔绘景里或在狄拉克绘景里, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 的形式都是一样:所以,算符 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 都可以简略标记为 H 0 {displaystyle H_{0},!} ,不会造成歧意。哈密顿算符的摄动成分 H 1 , I {displaystyle H_{1,,{mathcal {I}}},!} 是除非对易关系式 [ H 1 , S , H 0 , S ] = 0 {displaystyle =0,!} ,在狄拉克绘景里, H 1 , I {displaystyle H_{1,,{mathcal {I}}},!} 含时。与算符类似,在薛定谔绘景里的密度矩阵也可以变换到在狄拉克绘景里。设定 ρ I {displaystyle rho _{mathcal {I}},!} 和 ρ S {displaystyle rho _{mathcal {S}},!} 分别为在狄拉克绘景里和在薛定谔绘景里的密度矩阵。假若,处于量子态 | ψ n ⟩ {displaystyle |psi _{n}rangle ,!} 的概率是 p n {displaystyle p_{n},!} ,则本文以下内容,算符 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 都简略标记为 H 0 {displaystyle H_{0},!} 。:337-339从态矢量的定义式,可以得到态矢量对于时间的导数是将算符的定义式代入,可以得到这是施温格-朝永振一郎方程(英语:Schwinger-Tomonaga equation)的一个较为简单的形式。:153-155假若算符 A S {displaystyle A_{mathcal {S}},!} 不含时,则其对应的 A I ( t ) {displaystyle A_{mathcal {I}}(t),!} 的时间演化为这与在海森堡绘景里,算符 A H ( t ) {displaystyle A_{mathcal {H}}(t),!} 的时间演化类似:应用施温格-朝永振一郎方程于密度矩阵,则可得到应用狄拉克绘景的目的是促使 H 0 {displaystyle H_{0},!} 与时间无关,只有 H 1 , I ( t ) {displaystyle H_{1,,{mathcal {I}}}(t),!} 与时间有关,也只有 H 1 , I ( t ) {displaystyle H_{1,,{mathcal {I}}}(t),!} 控制态矢量随时间流易的演化行为。假若 H 0 {displaystyle H_{0},!} 有精确解,而 H 1 , S ( t ) {displaystyle H_{1,,{mathcal {S}}}(t),!} 是一个弱小的摄动,则可很便利地采用狄拉克绘景,使用时变摄动理论来计算 H 1 , S ( t ) {displaystyle H_{1,,{mathcal {S}}}(t),!} 所产生对于整个系统的影响。例如,在费米黄金定则的导引里:359–363,或在推导戴森级数(英语:Dyson series)时:355–357,通常都会用到狄拉克绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • 退伍军人菌嗜肺军团菌是一种有鞭毛,革兰氏阴性,军团菌属多形态性的短小球杆菌。嗜肺军团菌是一种原发的人类病原体,会引发军团病。嗜肺军团菌不抗酸,无孢子,无荚膜,类似于杆菌。不能分解明胶
  • 自我哲学自我哲学(英语:philosophy of self)是一个经验主体与所有其他的事物区别的身份条件。当代有关自我本性的探讨与人格本性、个人身份相关的讨论有所不同。“自我”一词有时被认为
  • 斯德哥尔摩综合征斯德哥尔摩综合征(英语:Stockholm syndrome;瑞典语:Stockholmssyndromet)又称为人质情结、人质综合征,是一种心理学现象,是指被害者对于加害者产生情感,同情加害者、认同加害者的某
  • 毛管蚜科毛管蚜科(Greenideidae)是蚜总科下的一个科。
  • 乐毅乐毅(?-?),燕国著名军事家,辅佐燕昭王,曾攻下齐国70余城而封昌国君,后获赵国封望诸君。与管仲齐名,是东周战国时期法家重要代表人物之一。魏国名将乐羊后代。乐羊葬于中山国灵寿(属今河
  • 范懋柱范懋柱(约1718年-1788年),字汉衡。清朝藏书家。浙江鄞县(今属宁波市海曙区)人,范钦八世孙。早年曾是诸生。乾隆帝诏修《四库全书》时,范懋柱进呈天一阁珍本638种,绝大多数未归还。乾
  • span class=nowrapPdSOsub4/sub/span硫酸钯(化学式:PdSO4)是一种无机化合物,存在无水物和二水合物。硫酸钯可以由氯化钯(II)和沸腾的浓硫酸反应,或者在空气中加热硫化钯(II)得到。加热氧化钯(II)和焦硫酸钾的混合物
  • 水渠明渠(英语:Open Channel、Nullah),又名水渠、人造河流、河道、运河,一个狭窄的谷地。在大雨的季节,明渠可以有效流走山洪。在工厂区,明渠引导废水到海洋或废水处理厂。
  • 杜伊斯堡杜伊斯堡(德语:Duisburg,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Ge
  • 异油酸异油酸是一种可以从奶和乳制品(例如酸奶和奶酪)中获得的天然ω−7反式脂肪酸。虽说异油酸是一种反式脂肪酸,但是这种天然反式脂肪可以降低人类血液里面的低密度胆固醇和三酸甘