相互作用绘景

✍ dations ◷ 2025-09-15 19:04:26 #相互作用绘景
在量子力学里,相互作用绘景(interaction picture),是在薛定谔绘景与海森堡绘景之间的一种表述,为纪念物理学者保罗·狄拉克而又命名为狄拉克绘景。在这绘景里,描述量子系统的态矢量与表达可观察量的算符都会随着时间流易而演化。有些实际案例会涉及到因相互作用而使得量子态与可观察量发生改变,这类案例通常会使用狄拉克绘景。狄拉克绘景与薛定谔绘景、海森堡绘景不同。在薛定谔绘景里,描述量子系统的态矢量随着时间流易而演化。在海森堡绘景里,表达可观察量的算符会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理行为。:80-84为了便利分析,位于下标的符号 H {displaystyle {}_{mathcal {H}}} 、 I {displaystyle {}_{mathcal {I}}} 、 S {displaystyle {}_{mathcal {S}}} 分别标记海森堡绘景、狄拉克绘景、薛定谔绘景。通过对于基底的一种幺正变换(英语:unitary transformation),算符和态矢量在狄拉克绘景里的形式与在薛定谔绘景里的形式相关联。在量子力学里,对于大多数案例的哈密顿量,通常无法找到薛定谔方程的精确解,只有少数案例可以找到精确解。因此,为了要能够解析其它没有精确解的案例,必须将薛定谔绘景里的哈密顿量 H S {displaystyle H_{mathcal {S}},!} 分成两个部分,:337-339其中, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 有精确解,有广泛知悉的物理行为,而 H 1 , S {displaystyle H_{1,,{mathcal {S}}},!} 则通常没有精确解,是对于系统的摄动。假若哈密顿量 H S {displaystyle H_{mathcal {S}},!} 含时(例如,感受到时变外电场作用的量子系统,其哈密顿量会含时),则通常会将显性含时部分放在 H 1 , S {displaystyle H_{1,,{mathcal {S}}},!} 里。这样, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时,而时间演化算符 U ( t ) {displaystyle U(t),!} 的公式可以简单地表示为其中, t {displaystyle t,!} 是时间。假若对于某些案例, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 应该设定为含时,则时间演化算符的公式会变得较为复杂::70-71本条目以下内容假设 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时。在狄拉克绘景里,态矢量 | ψ ( t ) ⟩ I {displaystyle |psi (t)rangle _{mathcal {I}},!} 定义为其中, | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}},!} 是在薛定谔绘景里的态矢量。由于在薛定谔绘景里, 态矢量 | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}},!} 与时间的关系为所以,在 H 0 , S , H S {displaystyle H_{0,{mathcal {S}}},H_{mathcal {S}}} 对易的条件下,可以有在狄拉克绘景里的算符 A I ( t ) {displaystyle A_{mathcal {I}}(t),!} 定义为其中, A S ( t ) {displaystyle A_{mathcal {S}}(t),!} 是在薛定谔绘景里对应的算符。(请注意, A S ( t ) {displaystyle A_{mathcal {S}}(t),!} 通常不含时间,可以重写为 A S {displaystyle A_{mathcal {S}},!} 。反例,对于时变外电场的状况,哈密顿算符 H S ( t ) {displaystyle H_{mathcal {S}}(t),!} 含时。)假若 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 不含时,则 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 e i H 0 , S t / ℏ {displaystyle e^{iH_{0,,{mathcal {S}}},t/hbar },!} 对易,不论在薛定谔绘景里或在狄拉克绘景里, H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 的形式都是一样:所以,算符 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 都可以简略标记为 H 0 {displaystyle H_{0},!} ,不会造成歧意。哈密顿算符的摄动成分 H 1 , I {displaystyle H_{1,,{mathcal {I}}},!} 是除非对易关系式 [ H 1 , S , H 0 , S ] = 0 {displaystyle =0,!} ,在狄拉克绘景里, H 1 , I {displaystyle H_{1,,{mathcal {I}}},!} 含时。与算符类似,在薛定谔绘景里的密度矩阵也可以变换到在狄拉克绘景里。设定 ρ I {displaystyle rho _{mathcal {I}},!} 和 ρ S {displaystyle rho _{mathcal {S}},!} 分别为在狄拉克绘景里和在薛定谔绘景里的密度矩阵。假若,处于量子态 | ψ n ⟩ {displaystyle |psi _{n}rangle ,!} 的概率是 p n {displaystyle p_{n},!} ,则本文以下内容,算符 H 0 , S {displaystyle H_{0,,{mathcal {S}}},!} 与 H 0 , I {displaystyle H_{0,,{mathcal {I}}},!} 都简略标记为 H 0 {displaystyle H_{0},!} 。:337-339从态矢量的定义式,可以得到态矢量对于时间的导数是将算符的定义式代入,可以得到这是施温格-朝永振一郎方程(英语:Schwinger-Tomonaga equation)的一个较为简单的形式。:153-155假若算符 A S {displaystyle A_{mathcal {S}},!} 不含时,则其对应的 A I ( t ) {displaystyle A_{mathcal {I}}(t),!} 的时间演化为这与在海森堡绘景里,算符 A H ( t ) {displaystyle A_{mathcal {H}}(t),!} 的时间演化类似:应用施温格-朝永振一郎方程于密度矩阵,则可得到应用狄拉克绘景的目的是促使 H 0 {displaystyle H_{0},!} 与时间无关,只有 H 1 , I ( t ) {displaystyle H_{1,,{mathcal {I}}}(t),!} 与时间有关,也只有 H 1 , I ( t ) {displaystyle H_{1,,{mathcal {I}}}(t),!} 控制态矢量随时间流易的演化行为。假若 H 0 {displaystyle H_{0},!} 有精确解,而 H 1 , S ( t ) {displaystyle H_{1,,{mathcal {S}}}(t),!} 是一个弱小的摄动,则可很便利地采用狄拉克绘景,使用时变摄动理论来计算 H 1 , S ( t ) {displaystyle H_{1,,{mathcal {S}}}(t),!} 所产生对于整个系统的影响。例如,在费米黄金定则的导引里:359–363,或在推导戴森级数(英语:Dyson series)时:355–357,通常都会用到狄拉克绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • 二十世纪1901年1月1日至2000年12月31日的这一段期间被称为20世纪。该世纪最初属于“不列颠治世”后期,是工业革命大爆发的年代,识字率大量提升,科学研究一日千里,人类学会了制造航天器与
  • Mars Society董事:干部:火星学会是一个提倡人类探险以及定居在火星的非营利组织,由罗勃·祖宾(英语:Robert Zubrin)博士等人于1998年创立。此学会的目的在于教育大众,媒体以及政府,人类在未来
  • 逆向获益法则逆向获益法则(inverse benefit law)是一种理论,是指新药品营销(英语:Pharmaceutical marketing)的更好,对病人可能越不好。更准确的说法是,新的药品对病人的获益相对其伤害的比例,会
  • 巨演化现代生物分类群体从它们的 共同祖先遗传分化的图示。进化论介绍(英语:Introduction to evolution) 演化的证据 共同起源 共同起源的证据群体遗传学 · 遗传多样性 突变 · 自
  • 大气物理学 大气力学(英语:Synoptic scale meteorology)天气 (分类) · (主题)气候 (分类) 气候变迁 (分类)云物理学是研究导致大气层云层形成,生长和冷凝的物理过程。云包括微
  • 健那绿染液健那绿B(英语:Janus Green B),又名詹纳斯绿B,简称健那绿或詹纳斯绿,是一种对线粒体专一的活体染料,具有脂溶性,能跨过细胞膜,有染色能力的基团带正电,结合在负电性性的线粒体内膜上,内
  • 基因靶向基因标的(英语:gene targeting,又称为基因标靶)是一种利用同源重组方法改变生物体某一内源基因的遗传学技术。这一技术可以用于删除某一基因、去除外显子或导入点突变,从而可以对
  • Desiderius Erasmus德西德里乌斯·伊拉斯谟·鹿特丹姆斯(德语:Desiderius Erasmus Roterodamus;1466年10月27日-1536年7月12日),也译作伊拉斯姆斯、埃拉斯默斯、艾拉思姆斯、伊拉斯默斯,史学界通称鹿
  • C50/D24ICD-10 第二章:肿瘤,为WHO规定的各类已发现的肿瘤。恶性肿瘤(C00-C97)淋巴、造血和有关组织的恶性肿瘤 (C81-C96)原位肿瘤 (D00-D09)良性肿瘤 (D10-D36)动态未定或动态未知的肿瘤(D37
  • 深海平原深海平原是大洋深处平缓的海床,是地球上最平坦和最少被开发的地段。它们通常位于3000至6000米的深处,位于大陆架和大洋中脊之间,延展数百公里宽。它们的起伏通常很小,每公里相差