首页 >
生命是什么?
✍ dations ◷ 2025-01-23 00:04:14 #生命是什么?
《生命是什么》(英语:What Is Life?)是物理学家薛定谔的一本生物学著作,发表于1944年。这本书是根据薛定谔于1943年2月,在都柏林三一学院的公开讲座课程内容。在书中薛定谔介绍了含有配置遗传信息的化学共价键,一种“不规律晶体”的概念。虽然自1869年以来已知脱氧核糖核酸(DNA)的存在,但在薛定谔讲述当时,DNA的螺旋形状与其在复制过程中的角色,还不明确。而在1950年代,这个概念刺激了其他人对于追寻遗传分子的研究热情。回顾历史,薛定谔对“不规律晶体”的理论性充分推测,可被视为提供了分子生物学家关于遗传物质,应该搜索的方向。共同发现DNA结构的詹姆斯·杜威·沃森和弗朗西斯·克里克,均表示他们研究最初的灵感源自本书,并且把描述遗传信息储存机制的前期理论,归功于薛定谔所撰写的此书。这本书是根据1943年2月都柏林三一学院的讲座课程内容,在1944年出版。该课程虽然预先声明了“该讲座的主题和内容偏于冷门艰深,即使物理学家以最强的数学推导能力,仍难以应用于其上”,仍然吸引了约400名的听众。他的演讲专注于一个重要主题:“某个有机活体内所发生的事件,如何借由物理和化学来解释?”当时仍尚未接受DNA作为遗传信息的载体,其后于1955年才开始了赫雪-蔡司实验。此时统计物理和量子力学是物理学最成功的分支,这些理论本质上也和统计学高度相关。薛定谔是量子力学的奠基人之一。马克斯·德尔布吕克关于生命物理基础的想法对薛定谔产生了重要影响。在此书发表之前,1946年诺贝尔奖得主的遗传学家赫尔曼·穆勒曾在1922年他的文章《Variation due to Change in the Individual Gene》中,陈述关于遗传分子(当时尚未确认为DNA)的所有基本性质;而薛定谔在1944年此书的〈from first principles〉中,衍生出相同概念(包括这种分子的不规律性)。其实穆勒在1922年的文章《The Gene As The Basis of Life》中已经指出不规律性,而且在1930年代更加详细地说明。此外,穆勒在1960年写给记者的信中提到,关于此书所谓的遗传分子概念早在1944年以前已经出版,而薛定谔的说法只是错误揣测。穆勒也提到有两位著名的遗传学家(包括马克斯·德尔布吕克),熟知1944年以前相关的出版资料,也与薛定谔有连络。但在1944年奥斯瓦尔德·埃弗里最重要的细菌转化实验后,DNA作为遗传分子才变成特定想法。在此之前,蛋白质被认为是最有可能作为所谓遗传分子的角色。在第一章薛定谔解释,大多数在大尺度上的物理定律源自于小尺度的混沌。他称这个原则为“来自无序的有序”(order-from-disorder)。他提出扩散作用来举例,扩散作用可以当成一个高度有序的过程,但它是由原子或分子的随机运动而引起。如果减少原子的数量,这系统的行为会变得更随机。他指出,生命非常依赖于秩序,因此朴实的物理学家会假设一个有机活体主要的编码,必须由大量原子所组成。在第二和第三章,他摘要了当时关于遗传机制的已知结果。最重要的,阐述了基因突变在生命演化中扮演的重要角色。他的结论是遗传信息的载体,必须能长时间持续不变而且尺寸要够小,而这样的性质与物理学家的期望是相抵触的;这个矛盾无法以古典物理学说来解释。在第四章他提到了分子,即使只包含了一些原子但分子的性质确实是稳定的,可作为前两章所述矛盾的解决方案。尽管之前分子就已经被发现了,它们的稳定性也无法由古典物理学解释;而需要量子力学的离散性说明。此外,基因突变可直接和量子穿隧效应联系起来。他继续在第五章解释,真实也永久的固态是结晶体。分子和晶体具备的稳定性,成因都是相同的原理。分子或可称为“固态的胚芽”。另一方面,没有晶体结构的不定形状固态,应被视为有非常高黏滞度的液体。薛定谔认为不重复自身的遗传物质,应该是某种分子而非晶体。因此他称为不规律的结晶。它的不规律本质能以很少的原子数量,对几乎无限量的可能性进行编码。最后他将以上说明与已知的事实相比较,认为两者是一致的。薛定谔在第六章说道:
.mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}⋯⋯生命物质,并非规避了至今所得知的“物理定律”,而可能是和迄今未知的“物理学的其它定律”有关,一旦发现了其它定律,将形成正如前者科学整体的一部分。他知道以上叙述容易被误解而试图澄清,主原则“来自有序的无序”所意味的是热力学第二定律:亦即在某个封闭系统(例如宇宙)中,熵(entropy)只会增加。薛定谔解释说,在一个开放系统中,生命物质会借由原态稳定地保持负熵(今日这个量被称为信息),来迂回规避第二定律达成热平衡的衰减。在第七章他认为,“来自有序的有序”并非全新的物理学;实际上,这原则更简单且更似合理。大自然遵循这个原则,而有些例外的譬如天体运动和钟表的机械构造,然而那些例外还是会被热和摩擦力影响的。系统机械式或统计上作功的程度或依赖于温度。如果时钟被加热到融化,那功能就停止运行。相反,如果温度接近绝对零度,那么任何系统的行为都会变得越来越机械式。某些系统表现出机械式行为是如此迅速,在室温下的行为就几乎等同绝对零度下的行为。薛定谔以哲学的思索,决定论、自由意志和人类意识的奥秘,来总结本章和本书。他试图“从以下两个前提,我们是否无法得出正确不矛盾的结论,(1)人体功能完全是机械化的,完全遵循自然物理定律;(2)有不容置疑的直接体验表明,我们自由地引控我们的身体,其结果可预测,而且最为关键且重要的是,承担我们选择行为的责任。我认为从这两个事实得出的唯一可能推论就是,‘我’,以最广义来说,所有曾自称或感受‘我’的有意识主体,根据自然定律控制‘原子运动’的人。”薛定谔反对意识源头随着人体逐渐毁坏的想法,因为他觉得这种想法“不合口味”。他也拒绝多重不朽的灵魂没有身体仍然可以存在的想法,因为他认为意识依旧是高度依赖于人体的。薛定谔写道,要调和这两种前提,唯一可能的选择是简单地持续著对于意识的直接体验,意识是一种奇异单元而其中有未知的多元;只有一个单元,却似乎有多元的表现,而一系列仅仅是呈现出这一个单元的多面向⋯⋯他说,意识是多重复数的任何直觉,是幻想的。薛定谔赞同婆罗门的印度教概念,其中每个人的意识只是弥漫在宇宙中,唯一的共同意识的各种表现 - 相当于印度教的梵概念。薛定谔认为,“......“我”这个人,如果有,那依照自然规律控制了'原子运动' ”不过他也限定了这结论在其“哲学的影响”,“必然主观的”。在最后一段他指出“我”的定义并非是经历体验的收集,而“即在收集它们的帆布之上。”如果催眠师能成功遮闭了所有早期记忆,他写道,就没有个人存在性的损失 - “也将不曾有是”在热力学第二定律支配的世界中,所有的孤立系统被预测会趋近于最大无序状态。既然生命接近并保持高度有序的状态,一些人认为,这似乎违反上述的第二定律,隐含有个悖论存在。然而,由于生物圈并不是一个孤立系统,所以该悖论不存在。有机体内部秩序的增加,是以散热到体外而增加周遭环境中的乱度,通过这种付出代价的方式,既遵循了第二定律,生命也能维持高度有序状态,而整个宇宙的乱度是只增无减的。为了增加地球上的复杂性 - 如生命那样 - 则需要自由能。太阳提供了地球上生命所需的自由能。
相关
- 胰蛋白酶结构 / ECOD胰蛋白酶(英语:trypsin)是一种酶。胰蛋白酶在小肠工作,它会将蛋白质水解为肽,进而分解为氨基酸。这是蛋白质能被人体吸收的必要过程。这种酶的作用原理和其他丝氨酸蛋
- B细胞B细胞(B淋巴球)有时称之为“朝囊定位细胞”(bursa oriented cells),这是因为它们首次在鸡的腔上囊(Bursa of Fabricius)被提及的关系。在肠道的派亚氏腺体(Peyer's glands)中的淋巴组
- 安乐死安乐死(英语:Euthanasia,源自于希腊语:εὐθανασία,“好的死亡”;εὖ为“好的”,θάνατος为“死亡”,此名称与实际作法不断地受到争议)是一种给予患有不治之症的人以无
- 埃莉诺·罗斯福安娜·埃莉诺·罗斯福(英语:Anna Eleanor Roosevelt,/ˈɛlᵻnɔːr ˈroʊzəvɛlt/,1884年10月11日-1962年11月7日)是一位美国政治人物。第32任美国总统富兰克林·德拉诺·罗斯
- 接合菌门接合菌门(学名:Zygomycota)是一类真菌。 其孢子分为有性及无性两种,有性生殖为接合孢子,无性生殖为孢囊孢子;此门菌物的菌丝属于“无隔多核”。传统上依据形态将真菌分为接合菌门(Z
- 广南省广南省(越南语:Tỉnh Quảng Nam/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","
- 珠蛋白结构 / ECOD结构 / ECOD珠蛋白(英语:Globins)是是含有血红素的球状蛋白质的超家族,涉及结合和/或运输氧气。这些蛋白质都包含珠蛋白折叠,有八个α螺旋片段的一种系列。两个突出的
- 操作语义学操作语义学是计算机科学中的一个概念,它是使得计算机程序在数学上更加严谨的一种手段。其它类似的手段包括提供形式语义学,包括公理语义学和指称语义。一个计算机语言的操作语
- 自噬自噬(英语:Autophagy,或称自体吞噬)是一个涉及到细胞自身结构通过溶酶体机制,负责将受损的细胞器、错误折叠的蛋白及其他大分子物质等运送至溶酶体降解并再利用的进化保守过程。
- 小儿科学小儿科(或称儿科)是现代医学的一个分支,专门医疗患病的婴儿、儿童及青少年。最大的年龄通常至青春期。一个受到这方面知识专门训练的医生被称作儿科医生。