组织蛋白

✍ dations ◷ 2025-05-17 16:42:08 #组织蛋白
组蛋白(英语:histone)是真核生物体细胞染色质与原核细胞中的碱性蛋白质,和DNA共同组成核小体结构。它们是染色质的主要蛋白质组分,作为DNA缠绕的线轴,并在基因调控(英语:Regulation of gene expression)中发挥作用,但是原核细胞组蛋白对基因调控的作用非常微弱。没有组织蛋白,染色体中未缠绕的DNA将非常长(人类DNA中的长宽比超过1000万比1)。例如,每个人类二倍体细胞(含有23对染色体)具有约1.8米长的DNA,但是在组织蛋白上缠绕它具有大约90微米(0.09毫米)的染色质,当在有丝分裂期间复制和浓缩时,其导致约120微米的染色体。结构 / ECOD结构 / ECOD存在五个主要的组织蛋白家族: H1/H5,H2A,H2B,H3和H4 。组织蛋白H2A,H2B,H3和H4被称为核心组织蛋白(Core Histone),而组织蛋白H1/H5被称为连接组织蛋白(Linker Histone)。在H2A、H2B、H3及H4这四种组蛋白中的其中两种称为“核心组蛋白”,并且集合成为八聚体的核小体核心颗粒。这种集合是将DNA的146对碱基对以1.65左手超螺旋形围在这个蛋白质线轴。连接组蛋白H1将核小体核心颗粒与DNA的进入位点及E位点结合,因而可以将DNA紧扣在位,并且能容许形成更高层次的结构。最基本的形状为一个10纳米的纤维或一连串的珠子。这涉及将在每一个核小体之间约50对的DNA碱基对围在这些核小体上,这些DNA又称为连接DNA。较高层次的结构包括有30及100纳米的纤维,是在一般细胞内的结构。在减数分裂中,透过核小体与其他蛋白质的相互作用,合成染色体。合成的组蛋白与DNA称为染色质。核心组蛋白是高度保守的蛋白质,意即组蛋白在氨基酸序列中有着非常小的改变。连接组蛋白通常有着多于一种的形状,对比核心组蛋白是保守程度较低的。在主要的组蛋白类别中,亦存在一些异构体。它们有着相同的氨基酸序列及相似的核心结构,但却有着不同的特征。这些不同的组蛋白通常带着染色质的特别功能,就如与H3相似的CenpA是唯一的组蛋白与染色体的着丝点联合;H2A的异构体H2A.Z是与活性转录基因联合与涉及在异染色体的形成;另一个H2A异构体H2A.X以双链断裂与DNA结合,并进行DNA修复。组蛋白H1有着一个中央球状结构域及长的C与N端尾巴,能将小珠子串结构围成30纳米大小的螺线管结构。对比其他种类的组蛋白,H1的数量只为其他的一半。这是因为它不是构成核小体部分,而只是将DNA及核小体紧扣在一起。H1亦有着它的异构体,称为组蛋白H5。组蛋白H2A、H2B及H4同样有着一个主要的球状结构域与长的N端尾巴,是组成小珠子串结构内的核小体的重要单元。与组蛋白H2A及H2B类似,组蛋白H3有着一个主要的球状结构域与长的N端尾巴,是组成小珠子串结构内的核小体的重要原素。它的N端尾巴从球状核小体核心伸出,能进行多种影响细胞运作的表观遗传修饰。这些修饰包括将甲基及乙酰基共价附着于离氨酸或精氨酸,及丝氨酸或羟丁氨酸的磷酸化。离氨酸9的甲基化涉及基因沉默及在DNA内形成相对较不活跃的异染色质。组蛋白H3的乙酰基化会在组蛋白尾巴内不同的离氨酸位置出现,并且由组蛋白乙酰转移酶(HAT)所催化。离氨酸14的乙酰基化在基因中很普遍,亦会转录成为核糖核酸(RNA)。以下是人类组蛋白的列表:核小体核心颗粒是由两个H2A-H2B二聚物及两个H3-H4二聚物结合而成,形成两半接近对称的蛋白质三级结构(2阶旋转对称,即1个高分子是另一个的镜像)。H2A-H2B及H3-H4二聚物本身亦呈现伪双向对称。这四个核心组蛋白(H2A、H2B、H3及H4)是在结构上相似及在进化中高度保存的,所有均有着一个“螺旋缠绕螺旋缠绕螺旋”的形状,可以容许简单的二聚化。它们在氨基酸结构上都有着一条长的尾巴,让转录后修饰的进行。总括来说,组蛋白与DNA有着五种的相互作用:组蛋白最重要的基本性质,除了是协助与DNA的相互作用外,就是它的水溶性。组蛋白的翻译后修饰会先在它的N端尾巴开始,再而在其球状结构域进行。这种修饰包括有甲基化、瓜氨化(英语:Citrullination)、乙酰化、磷酸化、小泛素相关修饰化(英语:SUMO protein)、泛素化及二磷酸腺苷核糖基化。这些影响着组蛋白在基因调控的功能。一般来说,活性的基因较少与组蛋白联系,但非活性的基因会在间期中与组蛋白联合。组蛋白的结构在进化上保存,这是因为任何有害的突变会造成严重的不适应性。于1884年,艾布瑞契·科塞尔首先发现组蛋白。直至1990年代早期,组蛋白才被更多认识,并非纯粹细胞核的惰性填充料,这部分基于马克·普塔什尼(Mark Ptashne)等人的模型,他们认为转录是被蛋白质-DNA和蛋白质-蛋白质相互作用在很大程度上被激活裸DNA模板,就像细菌一样。及后它的调控功能才被发现。在1980年代,Yahli Lorch和罗杰·科恩伯格(Roger Kornberg)表明,核心启动子上的核小体体外阻止了转录的启动,迈克尔·格伦斯坦(Michael Grunstein)证明组蛋白在体内抑制转录,导致核小体为 一般基因阻遏物。组蛋白作为DNA缠绕的线轴。 这使得能够在细胞核内将真核细胞的大型的基因组所必需的压实物:压实的分子比未压实的分子短40,000倍。组织蛋白进行翻译后修饰,以更改它与DNA及其他核蛋白的相互作用。组织蛋白H3及H4有着核小体伸出的长尾巴,能够在不同的地方进行共价修饰。这种修饰包括有甲基化、瓜氨化、乙酰基化、磷酸化、小泛素相关修饰化、泛素化及二磷酸腺苷核糖基化。组织蛋白核心(即H2A及H3)亦可以作出修饰。修饰的组合可以组成编码,成为组织蛋白编码。组织蛋白修饰在不同的生物过程起着作用,包括基因表观调控、DNA修复、有丝分裂及减数分裂 。组织蛋白修饰的命名是:举例来说,H3K4Me就代表组织蛋白H3从N端开始起计第4个赖氨酸的甲基化。

相关

  • 色素沉着绒毛结节性滑膜炎色素沉着绒毛结节性滑膜炎(英语:Pigmented villonodular synovitis,缩写为 英语:PVNS)也称为关节内的腱鞘巨细胞瘤(英语:intra-articular giant-cell tumor of the tendon sheath),是
  • 饮食美国的饮食文化反映出它的历史。来自欧洲的殖民者引进了一批食材和烹饪风格,时间进入19世纪和20世纪以后,由于众多外国移民的涌入,使得全美国各地展现出丰富的食物与多样性。因
  • 阿米替林阿米替林(Amitriptyline),商品名称Elavil,是使用最广泛的一种三环类抗抑郁药。 阿米替林可以治疗许多精神障碍,包括重度抑郁症和焦虑症,有时候也用来治疗精神病、注意力缺陷多动
  • 血红蛋白尿血红素尿症(Hemoglobinuria)是在尿液中发现血红蛋白(血红素)浓度过高的疾病。此疾病多半和溶血性贫血(英语:hemolytic anemia)有关,是原发性的血管内溶血,破坏红血球,因此血红素释放到
  • 词干在语言学中,词干(stem),或语干,是词的一部分。在不同情况下使用,其含义有差异。词干的其中一种含义,是指词缀所附着的部分。 例如在英语单词friendships中包含了词干friend,词缀-shi
  • 自我吮阳自我吮阳(英语:Autofellatio),又称为男性自我口交,是自慰的一种形式,指男性用口刺激自己的阴茎。只有少部分的男性身体能够自我吮阳。古埃及象形文字及绘画中已有对自我吮阳的描述
  • 山口大学山口大学(日语:やまぐちだいがく,英语:Yamaguchi University),本部位于日本山口县山口市的国立大学。1949年大学设置,简称山大(日语:やまだい)。Nigel Ward 日本大学排名:第28名(研究经
  • 精神药物公约《精神药物公约》是一项控制苯丙胺、LSD等精神药物的联合国公约,1971年2月21日于维也纳签署通过。1961年制定的《麻醉品单一公约》无法禁止新出现的精神类药物,它所禁止的只有
  • 甲硫咪唑甲巯咪唑(methimazole、thiamazole),是抗甲状腺药(英语:antithyroid agent),属于硫代酰胺类药物。甲巯咪唑的主要副作用和丙硫氧嘧啶类似,包括有粒细胞缺乏症(英语:agranulocytosis)及
  • 雌蕊群雌蕊群,或雌花器(英语:Gynoecium),为被子植物花中的心皮的总称。传统上把较典型形态的花的花部中,由子房、花柱、柱头等部位构成者称为雌蕊(pistil),但在一朵花为多心皮、离生的状态