伸展树

✍ dations ◷ 2024-12-23 00:00:17 #树结构,数据结构,计算机科学中未解决的问题

伸展树(英语:Splay Tree)是一种能够自我平衡的二叉查找树,它能在均摊 O ( log n ) {\displaystyle O(\log n)} 被访问过后,伸展操作会将移动到根节点。为了进行伸展操作,我们会进行一系列的旋转,每次旋转会使离根节点更近。通过每次访问节点后的伸展操作,最近访问的节点都会离根节点更近,且伸展树也会大致平衡,这样我们就可以得到期望均摊时间复杂度的下界——均摊 O ( log n ) {\displaystyle O(\log n)} 的儿子为是很重要的。如果为空,那么显然就是根节点了。

共有三种旋转操作,每种都有左旋(Zig)和右旋(Zag)两种情况。为了简单起见,对每种旋转操作只展示一种情况。这些旋转操作是:

Zig:当为根节点时进行。Zig通常只在伸展操作的最后一步进行。

Zig-zig和Zag-zag:当不为根节点且和都为左儿子或都为右儿子时进行。下图为和都为左儿子时的情况(即Zig-zig),需先将右旋到的位置,再将右旋到的位置。

Zig-zag和Zag-zig:当不为根节点且为左儿子而为右儿子时进行,反之亦然。下图为前述情况(即Zig-zag),需先将左旋到到的位置,再将右旋到的位置。

给出两棵树S和T,且S的所有元素都比T的元素要小。下面的步骤可以把它们连接成一棵树:

给出一棵树和一个元素,返回两棵树:一棵中所有的元素均小于等于x,另一棵中所有的元素大于。下面的步骤可以完成这个操作:

插入操作是一个比较复杂的过程,具体步骤如下:我们假定要插入的值为k。

如果当前树为空,则直接插入根。

如果当前节点的权值等于k则增加当前节点的大小并更新节点和父亲的信息,将当前节点进行splay操作。

否则按照二叉查找树的性质向下找,找到空节点就插入即可,当然在最后还要进行一次splay操作。

如同一般的查找树的查找方式。

以下是伸展树的C++实现(用指针实现)

#include <functional>#ifndef SPLAY_TREE#define SPLAY_TREEtemplate< typename T, typename Comp = std::less< T > >class splay_tree {private:  Comp comp;  unsigned long p_size;    struct node {    node *left, *right;    node *parent;    T key;    node( const T& init = T( ) ) : left( 0 ), right( 0 ), parent( 0 ), key( init ) { }  } *root;    void left_rotate( node *x ) {    node *y = x->right;    x->right = y->left;    if( y->left ) y->left->parent = x;    y->parent = x->parent;    if( x->parent ) {        if( x == x->parent->left ) x->parent->left = y;        else x->parent->right = y;    }    y->left = x;    x->parent = y;  }    void right_rotate( node *x ) {    node *y = x->left;    x->left = y->right;    if( y->right ) y->right->parent = x;    y->parent = x->parent;    if( x->parent ) {        if( x == x->parent->left ) x->parent->left = y;        else x->parent->right = y;    }    y->right = x;    x->parent = y;  }    void splay( node *x ) {    while( x->parent ) {      if( !x->parent->parent ) {        if( x->parent->left == x ) right_rotate( x->parent );        else left_rotate( x->parent );      } else if( x->parent->left == x && x->parent->parent->left == x->parent ) {        right_rotate( x->parent->parent );        right_rotate( x->parent );      } else if( x->parent->right == x && x->parent->parent->right == x->parent ) {        left_rotate( x->parent->parent );        left_rotate( x->parent );      } else if( x->parent->left == x && x->parent->parent->right == x->parent ) {        right_rotate( x->parent );        left_rotate( x->parent );      } else {        left_rotate( x->parent );        right_rotate( x->parent );      }    }  }    void replace( node *u, node *v ) {    if( !u->parent ) root = v;    else if( u == u->parent->left ) u->parent->left = v;    else u->parent->right = v;    if( v ) v->parent = u->parent;  }    node* subtree_minimum( node *u ) {    while( u->left ) u = u->left;    return u;  }    node* subtree_maximum( node *u ) {    while( u->right ) u = u->right;    return u;  }public:  splay_tree( ) : root( 0 ), p_size( 0 ) { }    void insert( const T &key ) {    node *z = root;    node *p = 0;        while( z ) {      p = z;      if( comp( z->key, key ) ) z = z->right;      else z = z->left;    }        z = new node( key );    z->parent = p;        if( !p ) root = z;    else if( comp( p->key, z->key ) ) p->right = z;    else p->left = z;        splay( z );    p_size++;  }    node* find( const T &key ) {    node *z = root;    while( z ) {      if( comp( z->key, key ) ) z = z->right;      else if( comp( key, z->key ) ) z = z->left;      else return z;    }    return 0;  }          void erase( const T &key ) {    node *z = find( key );    if( !z ) return;        splay( z );        if( !z->left ) replace( z, z->right );    else if( !z->right ) replace( z, z->left );    else {      node *y = subtree_minimum( z->right );      if( y->parent != z ) {        replace( y, y->right );        y->right = z->right;        y->right->parent = y;      }      replace( z, y );      y->left = z->left;      y->left->parent = y;    }        p_size--;  }    const T& minimum( ) { return subtree_minimum( root )->key; }  const T& maximum( ) { return subtree_maximum( root )->key; }    bool empty( ) const { return root == 0; }  unsigned long size( ) const { return p_size; }};#endif // SPLAY_TREE

时间效率分析

m次伸展操作的均摊时间效率 T a m o r t i z e d ( m ) = O ( m log n ) {\displaystyle T_{\mathrm {amortized} }(m)=O(m\log n)}

实际时间效率 T a c t u a l ( m ) = O ( m log n + n log n ) {\displaystyle T_{\mathrm {actual} }(m)=O(m\log n+n\log n)}

相关

  • 共价化合物共价键(英语:covalent bond),是化学键的一种。两个或多个非金属原子共同使用它们的外层电子(砷化镓为例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做
  • carbon dioxide二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空气中常见的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空气中有微量的二氧化碳,约占0.04%。二氧化碳略溶于水中,形成碳酸
  • 密支那密支那(缅甸语:မြစ်ကြီးနားမြို့,Myitkyina)是缅甸联邦之克钦邦的首府,距仰光1479公里,距曼德勒784公里。密支那坐落在伊洛瓦底江边,伊洛瓦底江两条支脉东支恩梅开
  • 医学机构医疗机构是所有提供医疗服务与健康照顾的机构的统称,如医学中心、综合医院、专科医院、育婴院、诊所、救护中心、医疗组织等,不论私家或者公立医院。
  • 黑河市黑河市是中华人民共和国黑龙江省下辖的地级市,位于黑龙江省西北部,小兴安岭北端,与俄罗斯阿穆尔州首府海兰泡隔黑龙江相邻。是中国北方重要边境贸易中心。全市总面积6.69万平方
  • 勃列日涅夫主义勃列日涅夫主义,又称勃列日涅夫学说,是时任苏共中央总书记的勃列日涅夫在1968年侵略捷克斯洛伐克镇压布拉格之春运动前后,在苏联及华沙条约成员国内,推行的一套对外扩张和对东欧
  • 界 (生物)在很长一段时间里,界(Kingdom)是生物科学分类法中最高的类别。一开始人只将生物分为动物和植物两界,微生物被发现后,也长时期被分入动物或植物界:好动的微生物被分入动物界,有色素
  • 国民议会 (海地)海地政府与政治 系列条目国民议会(法语:Assemblée Nationale)是海地的国家立法机构,拥有参议院和众议院。议会总部设在首都太子港。海地国民议会奉行两院制,上议院为海地参议院,
  • 埃斯塔雷雅埃斯塔雷雅(Estarreja)是葡萄牙的一座城市。面积108.4平方公里。有人口28,236人。市区本身人口约有7,000人。
  • 压赛堰站往倪家堰站正线、停车线往大通桥站压赛堰站,建设时曾用名汽车市场站,是浙江省宁波市一座地下轨道交通车站,属于宁波轨道交通2号线,站名得名于附近的压赛堰遗址。车站于2015年9月