伸展树

✍ dations ◷ 2025-06-29 11:13:29 #树结构,数据结构,计算机科学中未解决的问题

伸展树(英语:Splay Tree)是一种能够自我平衡的二叉查找树,它能在均摊 O ( log n ) {\displaystyle O(\log n)} 被访问过后,伸展操作会将移动到根节点。为了进行伸展操作,我们会进行一系列的旋转,每次旋转会使离根节点更近。通过每次访问节点后的伸展操作,最近访问的节点都会离根节点更近,且伸展树也会大致平衡,这样我们就可以得到期望均摊时间复杂度的下界——均摊 O ( log n ) {\displaystyle O(\log n)} 的儿子为是很重要的。如果为空,那么显然就是根节点了。

共有三种旋转操作,每种都有左旋(Zig)和右旋(Zag)两种情况。为了简单起见,对每种旋转操作只展示一种情况。这些旋转操作是:

Zig:当为根节点时进行。Zig通常只在伸展操作的最后一步进行。

Zig-zig和Zag-zag:当不为根节点且和都为左儿子或都为右儿子时进行。下图为和都为左儿子时的情况(即Zig-zig),需先将右旋到的位置,再将右旋到的位置。

Zig-zag和Zag-zig:当不为根节点且为左儿子而为右儿子时进行,反之亦然。下图为前述情况(即Zig-zag),需先将左旋到到的位置,再将右旋到的位置。

给出两棵树S和T,且S的所有元素都比T的元素要小。下面的步骤可以把它们连接成一棵树:

给出一棵树和一个元素,返回两棵树:一棵中所有的元素均小于等于x,另一棵中所有的元素大于。下面的步骤可以完成这个操作:

插入操作是一个比较复杂的过程,具体步骤如下:我们假定要插入的值为k。

如果当前树为空,则直接插入根。

如果当前节点的权值等于k则增加当前节点的大小并更新节点和父亲的信息,将当前节点进行splay操作。

否则按照二叉查找树的性质向下找,找到空节点就插入即可,当然在最后还要进行一次splay操作。

如同一般的查找树的查找方式。

以下是伸展树的C++实现(用指针实现)

#include <functional>#ifndef SPLAY_TREE#define SPLAY_TREEtemplate< typename T, typename Comp = std::less< T > >class splay_tree {private:  Comp comp;  unsigned long p_size;    struct node {    node *left, *right;    node *parent;    T key;    node( const T& init = T( ) ) : left( 0 ), right( 0 ), parent( 0 ), key( init ) { }  } *root;    void left_rotate( node *x ) {    node *y = x->right;    x->right = y->left;    if( y->left ) y->left->parent = x;    y->parent = x->parent;    if( x->parent ) {        if( x == x->parent->left ) x->parent->left = y;        else x->parent->right = y;    }    y->left = x;    x->parent = y;  }    void right_rotate( node *x ) {    node *y = x->left;    x->left = y->right;    if( y->right ) y->right->parent = x;    y->parent = x->parent;    if( x->parent ) {        if( x == x->parent->left ) x->parent->left = y;        else x->parent->right = y;    }    y->right = x;    x->parent = y;  }    void splay( node *x ) {    while( x->parent ) {      if( !x->parent->parent ) {        if( x->parent->left == x ) right_rotate( x->parent );        else left_rotate( x->parent );      } else if( x->parent->left == x && x->parent->parent->left == x->parent ) {        right_rotate( x->parent->parent );        right_rotate( x->parent );      } else if( x->parent->right == x && x->parent->parent->right == x->parent ) {        left_rotate( x->parent->parent );        left_rotate( x->parent );      } else if( x->parent->left == x && x->parent->parent->right == x->parent ) {        right_rotate( x->parent );        left_rotate( x->parent );      } else {        left_rotate( x->parent );        right_rotate( x->parent );      }    }  }    void replace( node *u, node *v ) {    if( !u->parent ) root = v;    else if( u == u->parent->left ) u->parent->left = v;    else u->parent->right = v;    if( v ) v->parent = u->parent;  }    node* subtree_minimum( node *u ) {    while( u->left ) u = u->left;    return u;  }    node* subtree_maximum( node *u ) {    while( u->right ) u = u->right;    return u;  }public:  splay_tree( ) : root( 0 ), p_size( 0 ) { }    void insert( const T &key ) {    node *z = root;    node *p = 0;        while( z ) {      p = z;      if( comp( z->key, key ) ) z = z->right;      else z = z->left;    }        z = new node( key );    z->parent = p;        if( !p ) root = z;    else if( comp( p->key, z->key ) ) p->right = z;    else p->left = z;        splay( z );    p_size++;  }    node* find( const T &key ) {    node *z = root;    while( z ) {      if( comp( z->key, key ) ) z = z->right;      else if( comp( key, z->key ) ) z = z->left;      else return z;    }    return 0;  }          void erase( const T &key ) {    node *z = find( key );    if( !z ) return;        splay( z );        if( !z->left ) replace( z, z->right );    else if( !z->right ) replace( z, z->left );    else {      node *y = subtree_minimum( z->right );      if( y->parent != z ) {        replace( y, y->right );        y->right = z->right;        y->right->parent = y;      }      replace( z, y );      y->left = z->left;      y->left->parent = y;    }        p_size--;  }    const T& minimum( ) { return subtree_minimum( root )->key; }  const T& maximum( ) { return subtree_maximum( root )->key; }    bool empty( ) const { return root == 0; }  unsigned long size( ) const { return p_size; }};#endif // SPLAY_TREE

时间效率分析

m次伸展操作的均摊时间效率 T a m o r t i z e d ( m ) = O ( m log n ) {\displaystyle T_{\mathrm {amortized} }(m)=O(m\log n)}

实际时间效率 T a c t u a l ( m ) = O ( m log n + n log n ) {\displaystyle T_{\mathrm {actual} }(m)=O(m\log n+n\log n)}

相关

  • 羟基.mw-parser-output ruby>rt,.mw-parser-output ruby>rtc{font-feature-settings:"ruby"1}.mw-parser-output ruby.large{font-size:250%}.mw-parser-output ruby.larger{fon
  • 查理大帝无 (前一位拥有相同头衔:查理曼(法语:Charles Ier le Grand、Charlemagne,德语:Karl I der Große,拉丁语:Carolus Magnus,(742年4月2日-814年1月28日)或称“查理大帝”,是欧洲中世纪早
  • 多发性硬化多发性硬化症(Multiple sclerosis,MS)是一种脱髓鞘性神经病变(英语:demyelinating disease),患者脑或脊髓中的神经细胞表面的绝缘物质(即髓鞘)受到破坏,神经系统的信号转导受损,导致一
  • 蛇尾纲海蛇尾,或阳燧足,是属于棘皮动物门的海蛇尾纲,是种类最多的一个纲,其下包括有220个属和2000个种。海蛇尾的结构与海星相似,但体盘相对较大,腕5个,盘与腕之间有明显交界,而后者腕与盘
  • 近鸟型近鸟型恐龙(学名:Paraves)或直接称为近鸟型,是个演化支,包含恐龙之中亲缘关系接近于鸟类而离偷蛋龙下目较远的所有物种,例如鸟翼类(始祖鸟、热河鸟和现代的鸟类)以及恐爪龙下目的驰
  • 伊斯兰教的神在伊斯兰教神学里,神(阿拉伯语:الله‎、安拉)是天下万物的全能全知造物主、支柱、命定者及裁决者。伊斯兰教强调神绝对是与生俱来的独一无二(讨黑德)、大慈大悲及无所不能。根
  • 克莱孟六世教宗克勉六世(拉丁语:Clemens PP. VI;1291年5月26日-1352年12月6日)原名伯多禄·罗热尔(Pierre Roger),1342年5月7日当选罗马主教(教宗),同年5月19日即位至1352年12月6日为止。他是本笃
  • 福阿德一世福阿德一世(阿拉伯语: فؤاد الأول‎;拉丁文转写:, 1868年3月26日-1936年4月28日),埃及及苏丹国王,是穆罕默德·阿里王朝的第九任统治者。 福阿德一世于1917年成为埃及苏丹
  • 克拉斯米尔·鲍里索夫克拉斯米尔·鲍里索夫·乔尔杰夫(保加利亚语:Красимир Борисов Георгиев,英语:Krasimir Borisov Georgiev,1950年4月8日-),是前保加利亚足球选手,司职中场,曾
  • 扬州工业职业技术学院扬州工业职业技术学院,是位于江苏省扬州市的一所公办全日制普通专科学校。