素数公式

✍ dations ◷ 2025-06-30 05:02:45 #素数,趣味数学,数学公式

质数公式,又称素数公式,在数学领域中,表示一种能够仅产生素数(素数)的公式。即是说,这个公式能够一个不漏地产生所有的素数,并且对每个输入的值,此公式产生的结果都是素数。由于素数的个数是可数的,因此一般假设输入的值是自然数集(或整数集及其它可数集)。迄今为止,人们尚未找到易于计算且符合上述条件的素数公式,但对于素数公式应该具备的性质已经有了大量的研究。

可以证明,一个整系数多项式(),如果不是常数函数的话,不会是一个素数公式。证明很简单:假设这样的一个多项式()存在。那么(1)将是一个素数。接下来考虑 P ( 1 + k p ) {\displaystyle P(1+kp)} ,我们有 P ( 1 + k p ) 0 ( mod p ) {\displaystyle P(1+kp)\equiv 0{\pmod {p}}} 的倍数,但已然假设 P {\displaystyle P} 1 + k p {\displaystyle 1+kp} () - 的一个根。但根据代数基本定理,一个非零的整系数多项式不可能有无穷多个根。故此,()只能是常数函数。

应用代数数理论,可以证明更强的结果:不存在能够对几乎所有自然数输入,都能产生素数的非常数的多项式()。

欧拉在1772年发现,对于小于40的所有自然数,多项式

的值都是素数。对于前几个自然数 = 0, 1, 2, 3...,多项式的值是41, 43, 47, 53, 61, 71...。当等于40时,多项式的值是1681=41×41,是一个合数。实际上,当能被41整除的时候,()也能被41整除,因而是合数。这个公式和所谓的素数螺旋有关,也和黑格纳数 163 = 4 41 1 {\displaystyle 163=4\cdot 41-1} 和, 线性函数 L ( n ) = a n + b {\displaystyle L(n)=an+b} ,都存在着整数对, ,使得对于每个0与−1之间的, L ( n ) = a n + b {\displaystyle L(n)=an+b} ,找出和是很困难的。目前最好的结果是对于 = 26,

一个很著名的素数公式是以下的有26个未知数的由14个方程组成的丢番图方程组Jones et al.(1976):

对于这个方程组的所有正整数解:(a,b,...,z), + 2都是素数。可以把这个公式改写成多项式的形式:将14个等式记作p1,p2,……,p14,那么可以说,多项式 ( k + 2 ) ( 1 p 1 2 p 2 2 p 14 2 ) {\displaystyle (k+2)(1-p_{1}^{2}-p_{2}^{2}-\cdots -p_{14}^{2})} 个素数的表达式:

第一个带高斯函数的素数公式由W. H. Mills在1947年构造。他证明了存在实数使得数列

中的每个数都是素数。最小的称为米尔斯常数,如果黎曼猜想成立,它的值大约为: A 1.30637788386308069046 {\displaystyle A\approx 1.30637788386308069046\ldots } 的性质所知甚少,甚至不知道是否为有理数。而且,除了用素数值逼近外,没有其他计算的方法。

使用威尔逊定理,可以建立一些其他的素数公式。以下的公式也没有什么实际价值,大多数的素性测试都比它远为有效。

我们定义

或者

这两种定义是等价的。π()就是小于的素数个数。于是,我们可以定义第个素数如下:

这个例子没有用到阶乘和威尔逊定理,但也大量应用了高斯函数(S. M. Ruiz 2000)。首先定义:

然后就有第个素数的表达式:

另外一个素数公式由以下递推关系组成的数列,其前后项的差来定义:

其中gcd(, )表示和的最大公约数。这个数列的开始几项an+1 - an是1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1 (OEIS中的数列A132199)。Rowlands (2008)证明了这个数列只含有一和素数。

其中,素数2出现无限多次,其余的素数恰好出现一次。实际上,当是素数的时候,由威尔逊定理, 2 n ! ( mod n + 1 ) {\displaystyle 2n!\;{\pmod {n+1}}} ,于是 f ( n ) = p {\displaystyle f(n)=p} 是合数的时候, 2 n ! ( mod n + 1 ) {\displaystyle 2n!{\pmod {n+1}}} 等于0,于是得到2。

相关

  • 维生素维生素(英语:Vitamin)是一系列有机化合物的统称,曾依音译,称作“维他命”。它们是生物体所需要的微量营养成分,而一般又无法由生物体自己生产,需要通过饮食等手段获得。维生素不能
  • 潜在适居太阳系外行星列表适居太阳系外行星目录是波多黎各大学的行星适居性实验室编制,这个列表是根据其方法及估算而使用地球相似指数(Earth Similarity Index)去为可能适居的太阳系外行星评定等级
  • 汕头岛屿中国广东省汕头市共有109个岛屿,其中无居民海岛共有106个,大部分属于南澳县。
  • 洛根洛根县(Logan County, Oklahoma)是美国奥克拉荷马州中部的一个县。面积1,940平方公里。根据美国2000年人口普查,共有人口33,924人。县治加斯里 (Guthrie)。成立于1890年。县名
  • .ky.ky为英国海外领地开曼群岛国家及地区顶级域(ccTLD)的域名。A .ac .ad .ae .af .ag .ai .al .am .ao .aq .ar .as .at .au .aw .ax .az  B .ba .bb .bd .be .bf .bg .bh .
  • 傅维森傅维森(1864年-1902年),字志丹,广东番禺人,晚清翰林。光绪十七年乡试解元,光绪二十一年(1895年)乙未科二甲第五名进士;同年五月,改翰林院庶吉士。散馆授编修。有《缺斋遗稿》。
  • 内藤信正内藤信正(1568年-1626年5月23日)是日本战国时代至江户时代初期的武将、谱代大名。近江国长滨藩(日语:長浜藩)第2代藩主、摄津国高槻藩(日语:高槻藩)藩主、山城国伏见藩(日语:伏見藩)藩主
  • 骨鲱群骨鲱群(学名:Otomorpha)是辐鳍鱼纲的重要演化支之一,包含了从鲤鱼到沙丁鱼等真骨鱼类。依2017年《硬骨鱼系统分类》,本群属于新鳍亚纲、真骨下纲、骨舌鱼高群、鲱头鱼总群。本群
  • 罗曼·赫尔佐克罗曼·赫尔佐克(Roman Herzog,1934年4月5日-2017年1月10日),德国政治家,第7任德国总统,出生于德国巴伐利亚州的兰茨胡特,德国基督教民主联盟(简称基民盟)成员。赫尔佐克于1978年至1980
  • 菲姐菲姐,可能指: