素数公式

✍ dations ◷ 2025-08-10 18:31:36 #素数,趣味数学,数学公式

质数公式,又称素数公式,在数学领域中,表示一种能够仅产生素数(素数)的公式。即是说,这个公式能够一个不漏地产生所有的素数,并且对每个输入的值,此公式产生的结果都是素数。由于素数的个数是可数的,因此一般假设输入的值是自然数集(或整数集及其它可数集)。迄今为止,人们尚未找到易于计算且符合上述条件的素数公式,但对于素数公式应该具备的性质已经有了大量的研究。

可以证明,一个整系数多项式(),如果不是常数函数的话,不会是一个素数公式。证明很简单:假设这样的一个多项式()存在。那么(1)将是一个素数。接下来考虑 P ( 1 + k p ) {\displaystyle P(1+kp)} ,我们有 P ( 1 + k p ) 0 ( mod p ) {\displaystyle P(1+kp)\equiv 0{\pmod {p}}} 的倍数,但已然假设 P {\displaystyle P} 1 + k p {\displaystyle 1+kp} () - 的一个根。但根据代数基本定理,一个非零的整系数多项式不可能有无穷多个根。故此,()只能是常数函数。

应用代数数理论,可以证明更强的结果:不存在能够对几乎所有自然数输入,都能产生素数的非常数的多项式()。

欧拉在1772年发现,对于小于40的所有自然数,多项式

的值都是素数。对于前几个自然数 = 0, 1, 2, 3...,多项式的值是41, 43, 47, 53, 61, 71...。当等于40时,多项式的值是1681=41×41,是一个合数。实际上,当能被41整除的时候,()也能被41整除,因而是合数。这个公式和所谓的素数螺旋有关,也和黑格纳数 163 = 4 41 1 {\displaystyle 163=4\cdot 41-1} 和, 线性函数 L ( n ) = a n + b {\displaystyle L(n)=an+b} ,都存在着整数对, ,使得对于每个0与−1之间的, L ( n ) = a n + b {\displaystyle L(n)=an+b} ,找出和是很困难的。目前最好的结果是对于 = 26,

一个很著名的素数公式是以下的有26个未知数的由14个方程组成的丢番图方程组Jones et al.(1976):

对于这个方程组的所有正整数解:(a,b,...,z), + 2都是素数。可以把这个公式改写成多项式的形式:将14个等式记作p1,p2,……,p14,那么可以说,多项式 ( k + 2 ) ( 1 p 1 2 p 2 2 p 14 2 ) {\displaystyle (k+2)(1-p_{1}^{2}-p_{2}^{2}-\cdots -p_{14}^{2})} 个素数的表达式:

第一个带高斯函数的素数公式由W. H. Mills在1947年构造。他证明了存在实数使得数列

中的每个数都是素数。最小的称为米尔斯常数,如果黎曼猜想成立,它的值大约为: A 1.30637788386308069046 {\displaystyle A\approx 1.30637788386308069046\ldots } 的性质所知甚少,甚至不知道是否为有理数。而且,除了用素数值逼近外,没有其他计算的方法。

使用威尔逊定理,可以建立一些其他的素数公式。以下的公式也没有什么实际价值,大多数的素性测试都比它远为有效。

我们定义

或者

这两种定义是等价的。π()就是小于的素数个数。于是,我们可以定义第个素数如下:

这个例子没有用到阶乘和威尔逊定理,但也大量应用了高斯函数(S. M. Ruiz 2000)。首先定义:

然后就有第个素数的表达式:

另外一个素数公式由以下递推关系组成的数列,其前后项的差来定义:

其中gcd(, )表示和的最大公约数。这个数列的开始几项an+1 - an是1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1 (OEIS中的数列A132199)。Rowlands (2008)证明了这个数列只含有一和素数。

其中,素数2出现无限多次,其余的素数恰好出现一次。实际上,当是素数的时候,由威尔逊定理, 2 n ! ( mod n + 1 ) {\displaystyle 2n!\;{\pmod {n+1}}} ,于是 f ( n ) = p {\displaystyle f(n)=p} 是合数的时候, 2 n ! ( mod n + 1 ) {\displaystyle 2n!{\pmod {n+1}}} 等于0,于是得到2。

相关

  • 麦迪逊麦迪逊(英语:Madison)是美国威斯康星州的首府和戴恩县的县治,亦为威斯康星大学主校区之所在地。2006年时人口数为223,389人,是威斯康星州第二大城,仅次于密尔瓦基。同时也是全美第
  • Accutron宝路华(Bulova)是一家以美国纽约为基地的公司,以生产手表及时钟为主要业务。宝路华由美国一位来自波希米亚的移民约瑟夫·宝路华(Joseph Bulova,1851年─1936年)于1875年创立,当时
  • 提乌德里克二世提乌德里克二世(法语:Thierry II;德语:Theuderich II;西班牙语:Teoderico II,587年-613年),595年3月28日—612年5月在位的勃艮第国王,在612年5月提乌德贝尔特二世死后继位为奥斯特拉西
  • 面 (几何)在立体几何中,立体几何体的边界被称作面或表面,更严谨地说,面是立体几何体的一个平坦表面,而不平坦的面通常称为曲面,而所有表面的总和称为表面积。在高维度几何以及高维的多胞形
  • 崔鹏 (地质学家)崔鹏(1957年8月7日-),陕西西安人,自然地理学与水土保持学家。1982年毕业于西北大学,1985年取得中国科学院成都地理研究所硕士学位,1990年取得北京林业大学博士学位。担任中国科学院
  • 利奥·罗利·卡尔南多利奥·罗利·卡尔南多(印尼语:Leo Rolly Carnando,2001年7月29日-),印尼男子羽毛球运动员。2018年7月,利奥·罗利·卡尔南多代表印尼参加本国举办的亚洲青年羽毛球锦标赛,助印尼队赢
  • 苏波莫苏波莫(印尼语:Soepomo,精确拼音:Supomo,1903年1月22日-1958年9月12日),已故印度尼西亚(印尼)政治人物,穆斯林,曾于1945年8月19日至11月14日期间在总统内阁当中担任印尼首任司法部长,并于
  • 尼泊尔民用航空局尼泊尔民用航空局(尼泊尔语:नेपाल नागरिक उड्डयन प्राधिकरण,,简称尼泊尔民航局)是尼泊尔政府的行政部门之一,负责管理尼泊尔的民用航空事务,成立于1998
  • 水芫花属水芫花属()是千屈菜科下的一属,主要生长在沿海地区,1775年提出。水芫花属有极高的适应性,根据环境因素不同,它可以延伸枝条,生长为灌木或矮树。
  • 轴流式压气机轴流式压气机,通常指压气机(英语:Axial compressor),是一种被广泛应用于燃气涡轮发动机的压缩气体的设备。压气机能够持续高效率的对轴向流动的空气进行增压,因此是大多数喷气发动