素数公式

✍ dations ◷ 2025-02-24 06:29:58 #素数,趣味数学,数学公式

质数公式,又称素数公式,在数学领域中,表示一种能够仅产生素数(素数)的公式。即是说,这个公式能够一个不漏地产生所有的素数,并且对每个输入的值,此公式产生的结果都是素数。由于素数的个数是可数的,因此一般假设输入的值是自然数集(或整数集及其它可数集)。迄今为止,人们尚未找到易于计算且符合上述条件的素数公式,但对于素数公式应该具备的性质已经有了大量的研究。

可以证明,一个整系数多项式(),如果不是常数函数的话,不会是一个素数公式。证明很简单:假设这样的一个多项式()存在。那么(1)将是一个素数。接下来考虑 P ( 1 + k p ) {\displaystyle P(1+kp)} ,我们有 P ( 1 + k p ) 0 ( mod p ) {\displaystyle P(1+kp)\equiv 0{\pmod {p}}} 的倍数,但已然假设 P {\displaystyle P} 1 + k p {\displaystyle 1+kp} () - 的一个根。但根据代数基本定理,一个非零的整系数多项式不可能有无穷多个根。故此,()只能是常数函数。

应用代数数理论,可以证明更强的结果:不存在能够对几乎所有自然数输入,都能产生素数的非常数的多项式()。

欧拉在1772年发现,对于小于40的所有自然数,多项式

的值都是素数。对于前几个自然数 = 0, 1, 2, 3...,多项式的值是41, 43, 47, 53, 61, 71...。当等于40时,多项式的值是1681=41×41,是一个合数。实际上,当能被41整除的时候,()也能被41整除,因而是合数。这个公式和所谓的素数螺旋有关,也和黑格纳数 163 = 4 41 1 {\displaystyle 163=4\cdot 41-1} 和, 线性函数 L ( n ) = a n + b {\displaystyle L(n)=an+b} ,都存在着整数对, ,使得对于每个0与−1之间的, L ( n ) = a n + b {\displaystyle L(n)=an+b} ,找出和是很困难的。目前最好的结果是对于 = 26,

一个很著名的素数公式是以下的有26个未知数的由14个方程组成的丢番图方程组Jones et al.(1976):

对于这个方程组的所有正整数解:(a,b,...,z), + 2都是素数。可以把这个公式改写成多项式的形式:将14个等式记作p1,p2,……,p14,那么可以说,多项式 ( k + 2 ) ( 1 p 1 2 p 2 2 p 14 2 ) {\displaystyle (k+2)(1-p_{1}^{2}-p_{2}^{2}-\cdots -p_{14}^{2})} 个素数的表达式:

第一个带高斯函数的素数公式由W. H. Mills在1947年构造。他证明了存在实数使得数列

中的每个数都是素数。最小的称为米尔斯常数,如果黎曼猜想成立,它的值大约为: A 1.30637788386308069046 {\displaystyle A\approx 1.30637788386308069046\ldots } 的性质所知甚少,甚至不知道是否为有理数。而且,除了用素数值逼近外,没有其他计算的方法。

使用威尔逊定理,可以建立一些其他的素数公式。以下的公式也没有什么实际价值,大多数的素性测试都比它远为有效。

我们定义

或者

这两种定义是等价的。π()就是小于的素数个数。于是,我们可以定义第个素数如下:

这个例子没有用到阶乘和威尔逊定理,但也大量应用了高斯函数(S. M. Ruiz 2000)。首先定义:

然后就有第个素数的表达式:

另外一个素数公式由以下递推关系组成的数列,其前后项的差来定义:

其中gcd(, )表示和的最大公约数。这个数列的开始几项an+1 - an是1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1 (OEIS中的数列A132199)。Rowlands (2008)证明了这个数列只含有一和素数。

其中,素数2出现无限多次,其余的素数恰好出现一次。实际上,当是素数的时候,由威尔逊定理, 2 n ! ( mod n + 1 ) {\displaystyle 2n!\;{\pmod {n+1}}} ,于是 f ( n ) = p {\displaystyle f(n)=p} 是合数的时候, 2 n ! ( mod n + 1 ) {\displaystyle 2n!{\pmod {n+1}}} 等于0,于是得到2。

相关

  • 美国药典《美国药典》(英语:United States Pharmacopeia, USP) 是美国药品( 包括原料药和制剂)的品质控制标准大全。它由美国药典委员会每年更新再版一次。它是美国食品药品监督管理局(FDA
  • 休格地陨石休格地陨石是休格地火星陨石家族中的第一个标本。这是一颗重量约5公斤,于1865年8月25日墬落在印度毕哈伽耶区休格地 (现在称为谢尔卡),并且几乎立刻就被寻获的火星陨石。这颗
  • 褶皱山褶皱是层状岩石受力后形成的波状弯曲。绝大多数的层状岩石是由堆积在盆地、海岸的平坦水平成层的沉积物形成,如隆升出露地面,形成水平岩层。褶皱有两种基本类型:褶皱的形成与受
  • 约翰·斯托克顿约翰·休斯敦·斯托克顿(英语:John Houston Stockton,1962年3月26日-),美国NBA联盟职业篮球运动员,司职控球后卫,1984至2003年间为犹他爵士队效力长达十九赛季,NBA效力单一球队球季数
  • 麦库姆麦库姆(McComb)是美国密西西比州派克县的一座城市,人口约1.3万(2000年)。
  • 凯尔·钱德勒凯尔·钱德勒(英语:Kyle Chandler,1965年9月17日-)是美国的一位男演员。他出演过众多电视剧,以及《金刚》、《超级8》、《逃离德黑兰》、《猎杀本拉登》、《华尔街之狼》、《好景
  • 保证金交易保证金交易(英语:Margin Trading),俗称孖展,是指以抵押按金来买卖证券、期权或期货的交易,而抵押的作用是抵消处理孖展的银行或证券行的信用风险。此等风险会在以下情况出现:投资者
  • 赖普尔拉尼赖普尔拉尼(Raipur Rani),是印度哈里亚纳邦Panchkula县的一个城镇。总人口7027(2001年)。该地2001年总人口7027人,其中男性3763人,女性3264人;0—6岁人口1035人,其中男597人,女438人;识
  • 梅西·米勒梅西·米勒(Marcia Muller)是一位美国作家,以神秘小说和惊悚小说闻名。梅西·米勒出生在密歇根州底特律,在密歇根州伯明翰长大,毕业于密歇根大学,之后在《日落杂志》担任记者。梅
  • 花千骨《花千骨》(英语:),是改编自fresh果果的仙侠小说《仙侠奇缘之花千骨》,于2014年5月6日在广西开机,9月杀青。主要讲述白子画与花千骨师徒的神仙故事及爱情故事。主演见面会和剧中重