首页 >
虚功
✍ dations ◷ 2025-12-05 10:44:40 #虚功
在分析力学里,施加于某物体的作用力,由于给定的虚位移,所做的机械功,称为虚功(英语:virtual work)。以方程表达,虚功
δ
W
{displaystyle delta W}
是其中,
F
{displaystyle mathbf {F} }
是作用力,
δ
r
{displaystyle delta mathbf {r} }
是虚位移。在这篇文章里,位移指的是平移运动所造成的位移或旋转运动所造成的角位移;作用力指的是力量或力矩。虚位移不是实际的位移,而是一种虚构的、理论上的位移,是一种只涉及位置,不涉及时间的变化。每一个虚位移既是自变量(independent variable),又是任意设定的。任意性是一个很重要的特性,在数学关系式里,能够推导出许多重要的结果。例如,思考下述矩阵方程:其中,
R
,
r
,
q
{displaystyle mathbf {R} , mathbf {r} , mathbf {q} }
都是矢量,
B
{displaystyle mathbf {B} }
是方块矩阵。假若,
R
{displaystyle mathbf {R} }
是个任意非零矢量,则可以将任意项目
R
{displaystyle mathbf {R} }
从方程中除去,得到
r
=
B
q
{displaystyle mathbf {r} =mathbf {B} mathbf {q} }
。虚功原理阐明,一个物理系统处于静态平衡(static equilibrium),当且仅当,所有施加的外力,经过符合约束条件的虚位移,所做的虚功的总和等于零。以方程表达,考虑一个由一群质点组成,呈静态平衡的物理系统,其内部任意一个质点
P
i
{displaystyle P_{i}}
可能感受到很多个作用力。这些作用力的总和
F
i
(
T
)
{displaystyle mathbf {F} _{i}^{(T)}}
等于零:给予这质点
P
i
{displaystyle P_{i}}
虚位移
δ
r
i
{displaystyle delta mathbf {r} _{i}}
,则合力
F
i
(
T
)
{displaystyle mathbf {F} _{i}^{(T)}}
所做的虚功
δ
W
i
{displaystyle delta W_{i}}
为零:总合这系统内做于每一个质点的虚功,其答案也是零:将合力细分为外力
F
i
{displaystyle mathbf {F} _{i}}
与约束力
C
i
{displaystyle mathbf {C} _{i}}
:假设所有约束力所做的符合约束条件的虚功,其总合是零:则约束力项目可以从方程中除去,从而得到虚功原理的方程:注意到这推论里的约束力假设。在这里,约束力就是牛顿第三定律的反作用力。因此,可以称此假设为反作用力的虚功假设:所有反作用力所做的符合约束条件的虚功,其总合是零。这是分析力学额外设立的假设,无法从牛顿运动定律推导出来。在动力学里,虚功原理会被推广为达朗贝尔原理。这原理是拉格朗日力学的理论基础。更详尽细节,请参阅相关条目。在此特别列出几个案例,展示出约束力所做的符合约束条件的虚功的总合是零:将一般的作用力和坐标分别变换为以广义力
F
i
{displaystyle {mathcal {F}}_{i}}
和广义坐标
q
i
{displaystyle q_{i}}
表达,设定一个
N
{displaystyle N}
维位形空间,其坐标为
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle (q_{1},q_{2},dots ,q_{N})}
,其内中表示位置的点称为位形点。想像这物理系统移动于这位形空间。在这位形空间里,广义力
F
=
(
F
1
,
F
2
,
…
,
F
N
)
{displaystyle {boldsymbol {mathcal {F}}}=(F_{1},F_{2},dots ,F_{N})}
垂直于符合约束条件的虚位移
δ
q
=
(
δ
q
1
,
δ
q
2
,
…
,
δ
q
N
)
{displaystyle delta mathbf {q} =(delta q_{1},delta q_{2},dots ,delta q_{N})}
。假设,这物理系统没有任何约束条件,则虚位移可以是任意矢量。但是,广义力
F
{displaystyle {boldsymbol {mathcal {F}}}}
不可能垂直于
N
{displaystyle N}
维位形空间里的每一个矢量,所以,广义力
F
{displaystyle {boldsymbol {mathcal {F}}}}
必须等于零。假设,这物理系统有
L
{displaystyle L}
个约束条件,则自由度为
N
−
L
{displaystyle N-L}
,位形点必需处于位形空间的某
N
−
L
{displaystyle N-L}
维子空间,而广义力
F
{displaystyle {boldsymbol {mathcal {F}}}}
必须垂直于这子空间,因此必需使用
N
−
L
{displaystyle N-L}
个运动方程来表达这物理系统。假设这系统是保守系统,则每一个广义力都是标量的广义位势函数
V
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle V(q_{1},q_{2},dots ,q_{N})}
的对于其对应的广义坐标的负偏导数:虚功与广义位势的关系为由于位势的变分
δ
V
{displaystyle delta V}
等于零,一个静态平衡系统的位势
V
{displaystyle V}
乃是个局域平稳值。注意到这系统只处于平稳状态。假设,要求这系统处于稳定状态,则位势
V
{displaystyle V}
必须是个局域极小值。
相关
- 分子克隆分子克隆(英语:Molecular cloning,又译分子纯化繁殖),而克隆英文字面上的意思,其实就是分子克隆,定义是指分离一个已知DNA序列,并以in vivo(活体内)方式获得许多复制品的过程。这一复
- 拉迪诺语拉迪诺语(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey
- 卡西奥多罗斯卡西奥多罗斯(英语:Cassiodorus,约485年-约585年),中世纪初期罗马城的政治家与作家,出身于贵族家庭,早年即博学多才,后参加政务。不久转攻基督教事务,曾因为被东罗马帝国的军队所俘获
- 逻辑符号在逻辑是否中,经常使用一组符号来表达逻辑结构AI。因为逻辑学家非常熟悉这些符号,他们在使用的时候没有解释它们。所以,给学逻辑的人的下列表格,列出了最常用的符号、它们的名字
- 蜥形纲蜥形纲(学名:Sauropsida)是羊膜动物(Amniota)的一大演化支,包含了所有现存爬行类与鸟类,鸟纲(Aves)因此是蜥形纲的一部分,此外还包括了一个现在已经灭绝的鱼龙超目。与蜥形类最亲近的
- 生态稳定性生态稳定性是指一个包括生态再生(英语:regeneration (ecology))及生态恢复能力(英语:Ecological resilience)(很快的恢复到原有状态),而且可以持续维持的稳定状态。其准确的定义会依
- 海平面上升海平面上升是海平面由于冰原和冰川的融化(通常是因为全球变暖)而上升的一个现象。其对气候变迁的影响,主要是反照率反馈的结果。2007年时,联合国政府间气候变化专门委员会预计了
- 武术武术,又称搏击、格斗,是指以肢体或冷兵器、武器互相竞技的技术。前者之内容为锻炼身体各部位以攻击对手,种类分为踢打拿摔四大类;后者则以刀、枪、棍、剑、鞭、镖、锤、矛、钯、
- 贾瑞贾瑞,贾府义学塾贾代儒的长孙。父母早亡,由祖父养大,贾代儒对贾瑞管教极为严格,但是贾瑞令人失望。他性格爱贪便宜,在学中以公报私,勒索子弟们请他,一任薛蟠横行霸道。在宁国府为贾
- 修行制度修道、修行、修行制度,主要是宗教关于修行的教导、制度等。可以指:
