虚功

✍ dations ◷ 2025-07-06 09:51:42 #虚功
在分析力学里,施加于某物体的作用力,由于给定的虚位移,所做的机械功,称为虚功(英语:virtual work)。以方程表达,虚功 δ W {displaystyle delta W} 是其中, F {displaystyle mathbf {F} } 是作用力, δ r {displaystyle delta mathbf {r} } 是虚位移。在这篇文章里,位移指的是平移运动所造成的位移或旋转运动所造成的角位移;作用力指的是力量或力矩。虚位移不是实际的位移,而是一种虚构的、理论上的位移,是一种只涉及位置,不涉及时间的变化。每一个虚位移既是自变量(independent variable),又是任意设定的。任意性是一个很重要的特性,在数学关系式里,能够推导出许多重要的结果。例如,思考下述矩阵方程:其中, R ,   r ,   q {displaystyle mathbf {R} , mathbf {r} , mathbf {q} } 都是矢量, B {displaystyle mathbf {B} } 是方块矩阵。假若, R {displaystyle mathbf {R} } 是个任意非零矢量,则可以将任意项目 R {displaystyle mathbf {R} } 从方程中除去,得到 r = B q {displaystyle mathbf {r} =mathbf {B} mathbf {q} } 。虚功原理阐明,一个物理系统处于静态平衡(static equilibrium),当且仅当,所有施加的外力,经过符合约束条件的虚位移,所做的虚功的总和等于零。以方程表达,考虑一个由一群质点组成,呈静态平衡的物理系统,其内部任意一个质点 P i {displaystyle P_{i}} 可能感受到很多个作用力。这些作用力的总和 F i ( T ) {displaystyle mathbf {F} _{i}^{(T)}} 等于零:给予这质点 P i {displaystyle P_{i}} 虚位移 δ r i {displaystyle delta mathbf {r} _{i}} ,则合力 F i ( T ) {displaystyle mathbf {F} _{i}^{(T)}} 所做的虚功 δ W i {displaystyle delta W_{i}} 为零:总合这系统内做于每一个质点的虚功,其答案也是零:将合力细分为外力 F i {displaystyle mathbf {F} _{i}} 与约束力 C i {displaystyle mathbf {C} _{i}} :假设所有约束力所做的符合约束条件的虚功,其总合是零:则约束力项目可以从方程中除去,从而得到虚功原理的方程:注意到这推论里的约束力假设。在这里,约束力就是牛顿第三定律的反作用力。因此,可以称此假设为反作用力的虚功假设:所有反作用力所做的符合约束条件的虚功,其总合是零。这是分析力学额外设立的假设,无法从牛顿运动定律推导出来。在动力学里,虚功原理会被推广为达朗贝尔原理。这原理是拉格朗日力学的理论基础。更详尽细节,请参阅相关条目。在此特别列出几个案例,展示出约束力所做的符合约束条件的虚功的总合是零:将一般的作用力和坐标分别变换为以广义力 F i {displaystyle {mathcal {F}}_{i}} 和广义坐标 q i {displaystyle q_{i}} 表达,设定一个 N {displaystyle N} 维位形空间,其坐标为 ( q 1 , q 2 , … , q N ) {displaystyle (q_{1},q_{2},dots ,q_{N})} ,其内中表示位置的点称为位形点。想像这物理系统移动于这位形空间。在这位形空间里,广义力 F = ( F 1 , F 2 , … , F N ) {displaystyle {boldsymbol {mathcal {F}}}=(F_{1},F_{2},dots ,F_{N})} 垂直于符合约束条件的虚位移 δ q = ( δ q 1 , δ q 2 , … , δ q N ) {displaystyle delta mathbf {q} =(delta q_{1},delta q_{2},dots ,delta q_{N})} 。假设,这物理系统没有任何约束条件,则虚位移可以是任意矢量。但是,广义力 F {displaystyle {boldsymbol {mathcal {F}}}} 不可能垂直于 N {displaystyle N} 维位形空间里的每一个矢量,所以,广义力 F {displaystyle {boldsymbol {mathcal {F}}}} 必须等于零。假设,这物理系统有 L {displaystyle L} 个约束条件,则自由度为 N − L {displaystyle N-L} ,位形点必需处于位形空间的某 N − L {displaystyle N-L} 维子空间,而广义力 F {displaystyle {boldsymbol {mathcal {F}}}} 必须垂直于这子空间,因此必需使用 N − L {displaystyle N-L} 个运动方程来表达这物理系统。假设这系统是保守系统,则每一个广义力都是标量的广义位势函数 V ( q 1 , q 2 , … , q N ) {displaystyle V(q_{1},q_{2},dots ,q_{N})} 的对于其对应的广义坐标的负偏导数:虚功与广义位势的关系为由于位势的变分 δ V {displaystyle delta V} 等于零,一个静态平衡系统的位势 V {displaystyle V} 乃是个局域平稳值。注意到这系统只处于平稳状态。假设,要求这系统处于稳定状态,则位势 V {displaystyle V} 必须是个局域极小值。

相关

  • 选举议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta
  • яЯ, я(称呼为 ja)是一个西里尔字母。Я 是俄语、白俄罗斯语和保加利亚语最后一个字母。Я 在俄语亦是代名词“我”的意思。有一种流行的说法,称“Я是最后一个字母”是用来教
  • 水解反应水解是一种化工单元过程,是物质与水反应,利用水形成新的物质的过程。通常是指盐类的水解平衡。无机物在水中分解通常是双分解过程,属于复分解反应。水分子也被分解成氢离子和氢
  • 放射性碳定年法放射性碳定年法(英语:Radiocarbon dating),又称碳测年(carbon dating)、碳十四定年法或碳十四年代测定法(carbon-14 dating),是利用自然存在的碳-14同位素的放射性定年法,用以确定原先
  • 古典希腊语古希腊语(古希腊语:Ἑλληνικὴ γλῶττα) 指代公元前9世纪至公元6世纪所有以口头及书面为载体的古希腊语族的方言,时间上包括公元前9世纪至公元前6世纪的古风时期,公元
  • 茎环茎环(英语:Stem-loop,或译主干-循环)指一种分子内碱基配对方式,与因此形成的结构,可发生于单股DNA,但在RNA分子中较为常见。当形成的循环较小时,也称为发夹(hairpin)或发夹环。此种结
  • 君主巴巴多斯君主,巴巴多斯的君主称号。巴巴多斯的国家元首,由英国君主兼任。1966年11月30日巴巴多斯从英国独立后,王位设立,作为英联邦内的独立君主国。巴巴多斯君主仅为国家之象征
  • 1-丁醇1-丁醇,是醇类的一种,每个分子拥有四个碳原子,其分子式为C4H10O。1-丁醇也称作正丁醇或丁醇(可能有歧义),它有三种同分异构体,分别是异丁醇、仲丁醇和叔丁醇。正丁醇为有酒味的无色
  • 精英政治精英政治、精英治国、任人唯才、唯才是用或选贤举能(英语:Meritocracy、粤语:唯才主义、拉丁语:I earn、希腊语:κράτος kratos "strength, power")通常是指一种政治哲学思想
  • sup57/supCo钴(原子量:58.933195(5))共有40个同位素,其中有1个是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。