虚功

✍ dations ◷ 2025-02-23 20:02:00 #虚功
在分析力学里,施加于某物体的作用力,由于给定的虚位移,所做的机械功,称为虚功(英语:virtual work)。以方程表达,虚功 δ W {displaystyle delta W} 是其中, F {displaystyle mathbf {F} } 是作用力, δ r {displaystyle delta mathbf {r} } 是虚位移。在这篇文章里,位移指的是平移运动所造成的位移或旋转运动所造成的角位移;作用力指的是力量或力矩。虚位移不是实际的位移,而是一种虚构的、理论上的位移,是一种只涉及位置,不涉及时间的变化。每一个虚位移既是自变量(independent variable),又是任意设定的。任意性是一个很重要的特性,在数学关系式里,能够推导出许多重要的结果。例如,思考下述矩阵方程:其中, R ,   r ,   q {displaystyle mathbf {R} , mathbf {r} , mathbf {q} } 都是矢量, B {displaystyle mathbf {B} } 是方块矩阵。假若, R {displaystyle mathbf {R} } 是个任意非零矢量,则可以将任意项目 R {displaystyle mathbf {R} } 从方程中除去,得到 r = B q {displaystyle mathbf {r} =mathbf {B} mathbf {q} } 。虚功原理阐明,一个物理系统处于静态平衡(static equilibrium),当且仅当,所有施加的外力,经过符合约束条件的虚位移,所做的虚功的总和等于零。以方程表达,考虑一个由一群质点组成,呈静态平衡的物理系统,其内部任意一个质点 P i {displaystyle P_{i}} 可能感受到很多个作用力。这些作用力的总和 F i ( T ) {displaystyle mathbf {F} _{i}^{(T)}} 等于零:给予这质点 P i {displaystyle P_{i}} 虚位移 δ r i {displaystyle delta mathbf {r} _{i}} ,则合力 F i ( T ) {displaystyle mathbf {F} _{i}^{(T)}} 所做的虚功 δ W i {displaystyle delta W_{i}} 为零:总合这系统内做于每一个质点的虚功,其答案也是零:将合力细分为外力 F i {displaystyle mathbf {F} _{i}} 与约束力 C i {displaystyle mathbf {C} _{i}} :假设所有约束力所做的符合约束条件的虚功,其总合是零:则约束力项目可以从方程中除去,从而得到虚功原理的方程:注意到这推论里的约束力假设。在这里,约束力就是牛顿第三定律的反作用力。因此,可以称此假设为反作用力的虚功假设:所有反作用力所做的符合约束条件的虚功,其总合是零。这是分析力学额外设立的假设,无法从牛顿运动定律推导出来。在动力学里,虚功原理会被推广为达朗贝尔原理。这原理是拉格朗日力学的理论基础。更详尽细节,请参阅相关条目。在此特别列出几个案例,展示出约束力所做的符合约束条件的虚功的总合是零:将一般的作用力和坐标分别变换为以广义力 F i {displaystyle {mathcal {F}}_{i}} 和广义坐标 q i {displaystyle q_{i}} 表达,设定一个 N {displaystyle N} 维位形空间,其坐标为 ( q 1 , q 2 , … , q N ) {displaystyle (q_{1},q_{2},dots ,q_{N})} ,其内中表示位置的点称为位形点。想像这物理系统移动于这位形空间。在这位形空间里,广义力 F = ( F 1 , F 2 , … , F N ) {displaystyle {boldsymbol {mathcal {F}}}=(F_{1},F_{2},dots ,F_{N})} 垂直于符合约束条件的虚位移 δ q = ( δ q 1 , δ q 2 , … , δ q N ) {displaystyle delta mathbf {q} =(delta q_{1},delta q_{2},dots ,delta q_{N})} 。假设,这物理系统没有任何约束条件,则虚位移可以是任意矢量。但是,广义力 F {displaystyle {boldsymbol {mathcal {F}}}} 不可能垂直于 N {displaystyle N} 维位形空间里的每一个矢量,所以,广义力 F {displaystyle {boldsymbol {mathcal {F}}}} 必须等于零。假设,这物理系统有 L {displaystyle L} 个约束条件,则自由度为 N − L {displaystyle N-L} ,位形点必需处于位形空间的某 N − L {displaystyle N-L} 维子空间,而广义力 F {displaystyle {boldsymbol {mathcal {F}}}} 必须垂直于这子空间,因此必需使用 N − L {displaystyle N-L} 个运动方程来表达这物理系统。假设这系统是保守系统,则每一个广义力都是标量的广义位势函数 V ( q 1 , q 2 , … , q N ) {displaystyle V(q_{1},q_{2},dots ,q_{N})} 的对于其对应的广义坐标的负偏导数:虚功与广义位势的关系为由于位势的变分 δ V {displaystyle delta V} 等于零,一个静态平衡系统的位势 V {displaystyle V} 乃是个局域平稳值。注意到这系统只处于平稳状态。假设,要求这系统处于稳定状态,则位势 V {displaystyle V} 必须是个局域极小值。

相关

  • α-变形菌纲α-变形菌(Alphaproteobacteria)是变形菌门(Proteobacteria)下的一个纲。此纲的成员变异性极大,且共通点极少,但他们确实系出同源。α-变形菌大多都是革兰氏阴性菌,而有些包内寄生
  • 链型植物轮藻门 有胚植物链型植物(英语:Streptophytina)是植物中的一大类群,包括轮藻门(广义上的轮藻)和有胚植物(现存的陆生植物:苔藓维管植物)两大类。
  • 后心肌梗塞症候群后心肌梗塞症候群(postmyocardial infarction syndrome),又称卓斯勒症候群(Dressler syndrome),是描述在心肌细胞或心包膜在受损后产生的后天性(英语:acquired)心包炎。常见症状包含
  • 更多这是各种元素的电离能的列表,单位为kJ·mol−1。
  • 维管形成层维管形成层是植物中纵向贯穿根和茎的一层组织,位于木质部和韧皮部之间,细胞形态扁平,细胞质浓。维管形成层一般由多层细胞所组成,严格说起来,其中只有一层原始细胞,可以不断地向内
  • 加拉巴哥群岛坐标:0°40′S 90°33′W / 0.667°S 90.550°W / -0.667; -90.550科隆群岛,又称加拉帕戈斯群岛(西班牙语:Islas Galápagos,官方名称Archipiélago de Colón),位于太平洋东部,接近
  • 寄生火山锥寄生火山锥是指岩浆在主要火山通道外溢出积聚而成的圆锥形地貌,例如夏威夷群岛毛纳基火山上有超过100个寄生火山锥,而意大利埃特纳火山则有超过300个寄生火山锥。
  • 消除消除反应(又称脱去反应或消去反应),是一种有机反应。是指一有机化合物分子和其他物质反应,失去部分原子或官能基(称为离去基)。反应后的分子会产生多键,为不饱和有机化合物。消除反
  • Intel 40044004是美国英特尔公司 (Intel) 推出的第1款微处理器,也是全球第一款微处理器;1971年11月15日发布。4004处理器的尺寸为3mm×4mm,外层有16只针脚,内有2,300个晶体管,采用五层设计
  • 楠梓坐标:22°44′13″N 120°20′04″E / 22.737050°N 120.334424°E / 22.737050; 120.334424楠梓交流道为国道一号联外楠梓、大社、仁武地区及工业区之重要交流道,指标为356k