阿伏加德罗常数

✍ dations ◷ 2024-12-22 23:11:09 #阿伏加德罗常数
在物理学和化学中,阿伏伽德罗常数(符号: N A {displaystyle N_{A}} 或 L {displaystyle L} ;英语:Avogadro number)的定义是一摩尔物质中所含的组成粒子数(一般为原子或分子),记做NA。因此,它是联系粒子摩尔质量(即一摩尔时的质量),及其质量间的比例系数。其数值为:较早的针对化学数量的定义中牵涉到另一个数,阿伏伽德罗数,历史上这个词与阿伏伽德罗常量有着密切的关系。一开始阿伏伽德罗数由让·佩兰定义为一克原子氢所含的分子数;后来则重新定义为12克碳-12所含的原子数量。因此,阿伏伽德罗数是一个无量纲的数量,与用基本单位表示的阿伏伽德罗常量数值一致。在国际单位制(SI)将摩尔加入基本单位后,所有化学数量的概念都必需被重定义。阿伏伽德罗数及其定义已被阿伏伽德罗常量取代,阿伏伽德罗常数以19世纪初期的意大利化学家阿莫迪欧·阿伏伽德罗命名,在1811年他率先提出,气体的体积(在某温度与压力下)与所含的分子或原子数量成正比,与该气体的性质无关。法国物理学家让·佩兰于1909年提出,把常数命名为阿伏伽德罗常量来纪念他。佩兰于1926年获颁诺贝尔物理学奖,他研究一大课题就是各种量度阿伏伽德罗常量的方法。阿伏伽德罗常量的值,最早由奥地利化学及物理学家约翰·约瑟夫·洛施米特(英语:Johann Josef Loschmidt)于1865年所得,他透过计算某固定体积气体内所含的分子数,成功估计出空气中分子的平均直径。前者的数值,即理想气体的数量密度(英语:Number density),叫“洛施米特常数(英语:Loschmidt constant)”,就是以他命名的,这个常数大约与阿伏伽德罗常量成正比。由于阿伏伽德罗常量有时会用L表示,所以不要与洛施米特(Loschmidt)的 L {displaystyle L} 混淆,而在德语文献中可能时会把它们都叫作“洛施米特常数”,只能用计量单位来分辨提及的到底是哪一个。要准确地量度出阿伏伽德罗常量的值,需要在宏观和微观尺度下,用同一个单位,去量度同一个物理量。这样做在早年并不可行,直到1910年,罗伯特·密立根成功量度到一个电子的电荷,才能够借助单个电子的电荷来做到微观量度。一摩尔电子的电荷是一个常数,叫法拉第常数,在麦可·法拉第于1834年发表的电解研究中有提及过。把一摩尔电子的电荷,除以单个电子的电荷,可得阿伏伽德罗常量 。自1910年以来,新的计算能更准确地确定,法拉第常数及基本电荷的值(见下文#测量)。让·佩兰最早提出阿伏伽德罗数( N {displaystyle N} )这样一个名字,来代表一克分子的氧(根据当时的定义,即32克整的氧),而这个词至今仍被广泛使用,尤其是入门课本改用阿伏伽德罗常量( N A {displaystyle N_{A}} )这个名字,是1971年摩尔成为国际单位制基本单位后的事,因为自此物质的量就被认定是一个独立的量纲。于是,阿伏伽德罗数再也不是纯数,因为带一个计量单位:摩尔的倒数(mol−1)。尽管不用摩尔来量度物质的量是挺罕见的,但是阿伏伽德罗常量可用其他单位表示,如磅摩尔(lb-mol)或盎司摩尔(oz-mol)。阿伏伽德罗常数是一个比例因数,联系自然中宏观与微观(原子尺度)的观测。它本身就为其他常数及性质提供了关系式。例如,它确立了气体常数R与玻耳兹曼常数 k B {displaystyle k_{B}} 间的关系式,以及法拉第常数F与基本电荷 e {displaystyle e} 的关系式,同时,阿伏伽德罗常数是原子质量单位(u)定义的一部分,其中 M u {displaystyle M_{u}} 为摩尔质量常数(即国际单位制下的1g/mol)。最早能准确地测量出阿伏伽德罗常量的方法,是基于电量分析(又称库仑法)理论。原理是测量法拉第常数 F {displaystyle F} ,即一摩尔电子所带的电荷,然后将它除以基本电荷 e {displaystyle e} ,可得阿伏伽德罗常量。国家标准技术研究所(NIST)的鲍瓦尔与戴维斯(Bower & Davis)实验在这一方法中堪称经典 ,原实验中电解槽的阳极是银制的,通电后银会“溶解”,实验中电量计所量度的就是这些单价银离子所带的电量,电解液为过氯酸,内含小量过氯酸银。设电流的大小为 I {displaystyle I} ,通电时间为 t {displaystyle t} ,从阳极中离开的银原子质量为 m {displaystyle m} 及银的原子重量为 A r {displaystyle A_{r}} ,则法拉第常数为:原实验中部分银原子会因机械性摩擦而脱落,而非通过电解,所以想通过银电极的消耗量来获得因电解而消耗的银原子质量 m {displaystyle m} ,就必须要解决摩擦造成的质量消耗问题,同时又不能大幅增加实验误差,为此NIST的科学家们设计出一种能补偿这个质量的方法:他们改在电解质中添加已知质量 m {displaystyle m} 的银离子,并使用铂制的阴极,银离子会在阴极上形成镀层,通过观测镀层来得知实验进程。法拉第常数的惯用值为 F 90 = 96485.3251 ( 12 ) {displaystyle F_{90}=96485.3251(12)} C/mol,对应的阿伏伽德罗常量值为6.022 140 857 (74)×1023 mol-1:两个数值的相对标准不确定度皆小于6994130000000000000♠1.3×10−6。科学技术数据委员会(CODATA)负责发表国际用的物理常数数值。它在计量阿伏伽德罗常量时,用到电子的摩尔质量 A r ( e ) M u {displaystyle A_{r}(e)Mu} ,与电子质量 m e {displaystyle m_{e}} 间的比值:电子的相对原子质量 A r ( e ) {displaystyle A_{r}(e)} ,是一种可直接测量的量,而摩尔质量常数 M u {displaystyle M_{u}} ,在国际单位制中其大小是有定义的,不用测量。然而,要得出电子的静止质量,必须通过计算,其中要使用其他需要测量的常数:由下表2014年国际科学技术数据委员会(CODATA)的值,可见限制阿伏伽德罗常量精确度的主要因素,是普朗克常数,因为计算用的其他常数都相对地准确。运用X射线晶体学,是一种能得出阿伏伽德罗常量的现代方法。现今的商业设备可以生产出单晶硅,产物有着极高的纯度,及极少晶格缺陷。这种方法把阿伏伽德罗常量定为一个比值,摩尔体积 V m {displaystyle V_{m}} 与原子体积 V a t o m {displaystyle V_{atom}} 间的比值:硅的晶胞有着由8个原子组成立方式充填排列,因此晶胞单元的体积,可由测量一个晶胞参数得出,而这个参数 a {displaystyle a} 就是立方的边长。实际上,所测量的距离叫 d 220 {displaystyle d_{220}} (Si),即密勒指数 { 220 } {displaystyle left{220right}} 所述的各平面间的距离,相等于 a 8 {displaystyle {frac {a}{sqrt {8}}}} 。2010年CODATA的 d 220 {displaystyle d_{220}} (Si)数值为6990192015571400000♠192.0155714(32) pm,相对不确定度为6992160000000000000♠1.6×10−8,对应的晶胞体积为6972160193329000000♠1.60193329(77)×10−28 m3。有必要测量样本的同位素成分比例,并在计算时考虑在内。硅共有三种稳定的同位素( Si 28 {displaystyle {ce {^28Si}}} , Si 29 {displaystyle {ce {^29Si}}} , Si 30 {displaystyle {ce {^30Si}}} ),它们在自然界的比例差异,比其他测量常数的不确定度还要大。由于三种核素的相对原子质量有着确高的准确度,所以晶体样本的原子重量 A r {displaystyle A_{r}} 会经由计算得出。经由 A r {displaystyle A_{r}} 与测量出的样本密度 ρ {displaystyle rho } ,可得求阿伏伽德罗常量所需的摩尔体积:其中 M u {displaystyle M_{u}} 为摩尔质量常数。根据2014年CODATA的数值,硅的摩尔体积为12.058 832 14(61),相对标准不确定度为6992510000000000000♠5.1×10−8。根据2010年CODATA的推荐值,透过X射线晶体密度法所得出的阿伏伽德罗常量,其相对不确定度为6992810000000000000♠8.1×10−8,比电子质量法高,约为其一倍半。国际阿伏伽德罗协作组织(IAC),又称“阿伏伽德罗计划”,是各国计量局于1990年代初开始建立的协作组织,目标是透过X射线晶体密度法,将相对不确定度降低至低于6992200000000000000♠2×10−8的水平。这个计划是千克新定义计划的一部分,千克的新定义将会由通用的物理常数组成,取代现行的国际千克原器。而阿伏伽德罗计划同时会与称量千克原器的功率天平测量互补,共同提升普朗克常数的精确度。在现行的国际单位制(SI)定义下,测量阿伏伽德罗常量,就是间接地测量普朗克常数:测量对象是一个受过高度打磨的硅制球体,重量为一千克整。使用球体是因为这样做会简化其大小的测量(因此密度也是),以及将无可避免的表面氧化层效应最小化。最早期的测量,用的是有着自然同位素成分的硅球,常数的相对不确定度为3.1×10−7。这些最早期的数值,与从瓦特秤来的普朗克常数测量结果并不一致,尽管科学家们认为他们已经知道差异的成因。早期数值的剩余不确定性,来源为硅同位素构成的测量,这个测量是用于计算原子重量的,因此在2007年种出了一4.8千克的同位素浓缩硅单晶(99.94% Si 28 {displaystyle {ce {^28Si}}} ),然后从中切割出两个各一千克的球体。球体的直径测量在重复时相差小于0.3nm,重量的不确定度为3μg。报告论文于2011年1月时发表,概括了国际阿伏伽德罗协作组织的研究结果,同时提交了对阿伏伽德罗常量的测量数值,为 7023602214078000000♠6.02214078(18)×1023 mol−1,与瓦特秤的数值一致,但更准确。

相关

  • 斑贴试验贴布试验,又名斑贴试验,是一种用来确定是否有特定物质会导致患者过敏性或发炎肌肤。任何人被怀疑有过敏性接触性皮肤炎(英语:Allergic contact dermatitis)或过敏性皮炎,需要经过
  • CD-ROM只读光盘(Compact Disc Read-Only Memory,缩写:CD-ROM),是一种在电脑上使用的光盘。这种光盘只能写入数据一次,信息将永久保存在光盘上,使用时通过光盘驱动器读出信息。CD的格式最
  • 保罗·博尔塞利诺保罗·博尔塞利诺(于1940年1月19日出生在巴勒莫,1992年7月19日在同一个城市罹难)是一名意大利反黑法官,1992年7月19日他被黑手党的汽车炸弹谋害于巴勒莫。此前不足两个月,他的朋
  • 生物强化生物强化(英语:Biological augmentation)是指通过添加细菌或古菌来提高生物降解速度的过程。源自受污染地区的生物可能已经能够分解废物,但可能效率低下、速度慢。因此,科学家通
  • 创造力创造力,或创造性、才思,是一种基于概念工具及精神上技巧的人类精神现象而最终产生或发展为创意、启发及直觉的过程。从一个科学观点去看,创造性思想的产品(有时称作离散思维)通常
  • 光线跟踪参数所指定的目标页面不存在,建议更正成存在页面或直接建立下列一个页面(建立前请先搜寻是否有合适的存在页面可以取代):]]光线追踪(Ray tracing)是三维计算机图形学中的特殊渲染
  • 女性国家元首本表列出女性担任选举或者任命的国家元首的情况。始于20世纪中叶,本文不包括女君主,和不担任国家元首的政府首脑,比如总理。*兼任政府首脑 ^两人或更多人共同担任元首及首脑
  • 灰指甲甲癣(onychomycosis),俗称臭甲、灰指甲,泛指受到真菌感染的指甲,通常影响脚趾,但手指甲也有可能出现。两成指甲病是由甲癣所引起。甲癣的成因是真菌感染,主要细为分酵母菌感染、霉
  • 杜松杜松(?-1619年4月15日),字来清,明朝陕西榆林人。为明朝大将。勇健绝伦,塞外民族皆称其为“杜太师”。为明朝大将杜桐之弟。杜松,号称“杜黑子”。交锋时掳起两臂,乌黑如漆,持着金刀乱
  • 欢乐合唱团《欢乐合唱团》(英语:Glee)是一部美国电视音乐剧兼青春喜剧,由《整容室》的创作人莱恩·墨菲等创作,2009年起开始在福斯电视网播放。背景设定在俄亥俄州利马镇(Lima, Ohio)上虚构的