乌鸦悖论

✍ dations ◷ 2025-12-02 13:50:49 #悖论

乌鸦悖论(英语:raven paradox),也叫做亨佩尔的乌鸦或亨佩尔悖论,是1940年代德国逻辑学家卡尔·亨普尔为了说明归纳法违反直觉而提出的一个悖论。

几千年以来,无数人观察了许多事务,比如地心引力法则,人们趋于相信其极可能是真理。这种类型的推理可以总结成“归纳法原理”:

亨佩尔给出了归纳法原理的一个例子: “所有乌鸦都是黑色的”论断。我们可以出去观察成千上万只乌鸦,然后发现他们都是黑的。在每一次观察之后,我们对“所有乌鸦都是黑的”的信任度会逐渐提高。归纳法原理在这里看起来合理的。

现在问题出现了。“所有乌鸦都是黑的” 的论断在逻辑上和“所有不是黑的东西不是乌鸦”等价。如果我们观察到一个红苹果,它不是黑的,也不是乌鸦,那么这次观察必会增加我们对“所有不是黑的东西不是乌鸦”的信任度,因此更加确信“所有的乌鸦都是黑的!”这个问题被总结成:

余未尝见有紫牛,
然苟余或遇其一,
则云乌鸦俱黑者,
岂其益发可信兮?




解决它和直觉的冲突,哲学家们提出了一些方法。美国逻辑学家纳尔逊·古德曼建议对我们的推理添加一些限制,比如永远不要考虑支持论断“所有P满足Q”且同时也支持“没有P满足Q” 的实例。

其他一些哲学家质疑“等价原理”。也许红苹果能够增加我们对论断“所有不是黑的东西不是乌鸦”的信任度,而不增加我们对 “所有乌鸦都是黑色的”信任。这个提议受到质疑,因为你不能对等价的两个命题有不同的信任度,如果你知道他们都是真的或都是假的。

古德曼,以及其后的威拉德·冯·奥曼·蒯因,使用术语“”来描述这些类似于“乌鸦”和“黑色”的命题,所有这类命题是支持归纳推理法的;而“非projectible predicate”则为与只相反的后者,如“非黑”和“非乌鸦”这些命题并不支持归纳推理法。蒯因还提出一个需要证实的猜想:如果任何命题是projectible的;在无限物件组成的全集中,一个projectible的命题的补集永远是非projectible的。

这样一来,虽然“所有乌鸦都是黑的”和“所有不是黑的东西都不是乌鸦”这两个命题所拥有的信任度必须相等,但只有“黑色的乌鸦”才能同时增加两者的信任度,而“非黑色的非乌鸦”并不增加任何一个命题的信任度。

还有些哲学家认为其实这个命题是完全正确的,出错的是我们自己的逻辑。其实观察到一个红色的苹果确实会增加乌鸦都是黑色的可能性!这就相当于:如果有人把宇宙中所有不是黑的物体都给你看,而你发现所有的物体都不是乌鸦,那你就完全可以断定所有乌鸦都是黑的了。这个“悖论”看上去荒谬只是因为宇宙中“不是黑的”物体远远多于“乌鸦”,所以发现一个“不是黑的”物体只增加了极其微小的对于“乌鸦都是黑的”的信任度,而相对而言,每发现一只黑的乌鸦就是一个有力的证据了。

除了以上的陈述以外,“归纳法原理”还有另一种形式,就是贝叶斯推理。

设 为支持论断 的一个实例,而 表示我们所有的已知信息。

Pr ( | ) {\displaystyle \Pr(\bullet |\circ )} 成立的几率,已知 和 都是成立的,可以推得,

这里 P r ( T | I ) {\displaystyle Pr(T|I)} 是已知成立的情况下, 成立的几率; P r ( X | T I ) {\displaystyle Pr(X|TI)} 和 都已知成立的情况下, 成立的几率;而 P r ( X | I ) {\displaystyle Pr(X|I)} 是已知成立的情况下, 成立的几率。

利用这个原理,这个悖论就不会出现了。如果有人随机选一个“苹果”,那么他看到一个红苹果的几率和“乌鸦”的颜色是完全没有关系的。这时分子等于分母,所以分数等于1,所以以上讨论的几率不会改变。所以看见一只红色的苹果不会增加人们对“乌鸦都是黑色的”的信任度。

而如果那人是随机选择一个非黑的“物件”,那个物件正好是一个红的苹果,那么我们会得到一个分子大于分母的,几乎等于一的假分数。所以在这个情况下,看见一只红苹果确实会极微小地增加我们对“乌鸦都是黑色的”的信任度。

其实,随着一个人看到的不是黑色的东西的增加(并发现其中没有乌鸦),“乌鸦都是黑色的”的几率会趋向于1。

相关

  • 米底王国米底王国或米底亚王国(Median dynasty),又称玛代王国(Mādai),是一个以古波斯地区为中心的王国,领土面积最大时西起小亚细亚的卡帕多西亚,东至阿拉霍西亚西部。他们隶属印欧语系,是第
  • 熊去氧胆酸熊去氧胆酸(英语:Ursodeoxycholic acid,也被称为3α,7β-二羟基-5β-胆烷-24-羧酸,3α,7β-dihydroxy-5β-cholan-24-oic acid,缩写 UDCA),是一种来自熊胆的胆汁酸,为次级胆汁酸,由初
  • abbr class=abbr title=R8: 与可燃物质接触可能引起火灾R8/abbr警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/
  • 台湾保育物种列表行政院农业委员会依《野生动物保育法》 公告之保育类野生动物名录,按照族群数量与保护等级,可分为、及之野生动物共三大类,内容函盖台湾境内及境外之物种。依《文化资产保存法
  • 中观中观(梵语:मध्यमिका,转写:madhyamakā),大乘佛教术语,以观察中道作为修行。其思想起源于《杂阿含经》,即八正道中的正见。龙树著《中论》以此为理论核心,为中观派的核心思想
  • 白举纲2013湖南卫视《快乐男声》全国季军、2013新浪微博年度星光奖、第四期全球中文音乐榜上榜冠军、白举纲(1993年11月2日-),汉族,中国大陆男歌手。毕业于四川师范大学,中国内地男歌手
  • 平行语料对两种语言的篇章、段落、语句进行对齐处理后得到的语言库为平行语料库,相应地平行语料指的是对应的两种语言的语料
  • 陈澍城陈澍城(英文名:Chen Shucheng,1949年10月21日-),本名陈澍承,新加坡华裔演员,曾经也是节目主持人。他是自新加坡电视黑白电视时期便活跃在荧光幕前至今的少数演员之一。1995 向云 2
  • 颠倒乾坤《颠倒乾坤》(英语:)是1983年的美国喜剧电影,由约翰·兰迪斯执导,蒂莫西·哈里斯和赫舍尔·魏因格罗德编剧,主要演员包括丹·艾克罗伊德、埃迪·墨菲、拉尔夫·贝拉米、唐·阿米契
  • 曾直 (1919年)曾直(1919年-1987年),又名曾树根,男,四川青神人,中华人民共和国政治人物,曾任财政部副部长,交通部副部长、顾问。