乌鸦悖论

✍ dations ◷ 2025-11-22 08:32:48 #悖论

乌鸦悖论(英语:raven paradox),也叫做亨佩尔的乌鸦或亨佩尔悖论,是1940年代德国逻辑学家卡尔·亨普尔为了说明归纳法违反直觉而提出的一个悖论。

几千年以来,无数人观察了许多事务,比如地心引力法则,人们趋于相信其极可能是真理。这种类型的推理可以总结成“归纳法原理”:

亨佩尔给出了归纳法原理的一个例子: “所有乌鸦都是黑色的”论断。我们可以出去观察成千上万只乌鸦,然后发现他们都是黑的。在每一次观察之后,我们对“所有乌鸦都是黑的”的信任度会逐渐提高。归纳法原理在这里看起来合理的。

现在问题出现了。“所有乌鸦都是黑的” 的论断在逻辑上和“所有不是黑的东西不是乌鸦”等价。如果我们观察到一个红苹果,它不是黑的,也不是乌鸦,那么这次观察必会增加我们对“所有不是黑的东西不是乌鸦”的信任度,因此更加确信“所有的乌鸦都是黑的!”这个问题被总结成:

余未尝见有紫牛,
然苟余或遇其一,
则云乌鸦俱黑者,
岂其益发可信兮?




解决它和直觉的冲突,哲学家们提出了一些方法。美国逻辑学家纳尔逊·古德曼建议对我们的推理添加一些限制,比如永远不要考虑支持论断“所有P满足Q”且同时也支持“没有P满足Q” 的实例。

其他一些哲学家质疑“等价原理”。也许红苹果能够增加我们对论断“所有不是黑的东西不是乌鸦”的信任度,而不增加我们对 “所有乌鸦都是黑色的”信任。这个提议受到质疑,因为你不能对等价的两个命题有不同的信任度,如果你知道他们都是真的或都是假的。

古德曼,以及其后的威拉德·冯·奥曼·蒯因,使用术语“”来描述这些类似于“乌鸦”和“黑色”的命题,所有这类命题是支持归纳推理法的;而“非projectible predicate”则为与只相反的后者,如“非黑”和“非乌鸦”这些命题并不支持归纳推理法。蒯因还提出一个需要证实的猜想:如果任何命题是projectible的;在无限物件组成的全集中,一个projectible的命题的补集永远是非projectible的。

这样一来,虽然“所有乌鸦都是黑的”和“所有不是黑的东西都不是乌鸦”这两个命题所拥有的信任度必须相等,但只有“黑色的乌鸦”才能同时增加两者的信任度,而“非黑色的非乌鸦”并不增加任何一个命题的信任度。

还有些哲学家认为其实这个命题是完全正确的,出错的是我们自己的逻辑。其实观察到一个红色的苹果确实会增加乌鸦都是黑色的可能性!这就相当于:如果有人把宇宙中所有不是黑的物体都给你看,而你发现所有的物体都不是乌鸦,那你就完全可以断定所有乌鸦都是黑的了。这个“悖论”看上去荒谬只是因为宇宙中“不是黑的”物体远远多于“乌鸦”,所以发现一个“不是黑的”物体只增加了极其微小的对于“乌鸦都是黑的”的信任度,而相对而言,每发现一只黑的乌鸦就是一个有力的证据了。

除了以上的陈述以外,“归纳法原理”还有另一种形式,就是贝叶斯推理。

设 为支持论断 的一个实例,而 表示我们所有的已知信息。

Pr ( | ) {\displaystyle \Pr(\bullet |\circ )} 成立的几率,已知 和 都是成立的,可以推得,

这里 P r ( T | I ) {\displaystyle Pr(T|I)} 是已知成立的情况下, 成立的几率; P r ( X | T I ) {\displaystyle Pr(X|TI)} 和 都已知成立的情况下, 成立的几率;而 P r ( X | I ) {\displaystyle Pr(X|I)} 是已知成立的情况下, 成立的几率。

利用这个原理,这个悖论就不会出现了。如果有人随机选一个“苹果”,那么他看到一个红苹果的几率和“乌鸦”的颜色是完全没有关系的。这时分子等于分母,所以分数等于1,所以以上讨论的几率不会改变。所以看见一只红色的苹果不会增加人们对“乌鸦都是黑色的”的信任度。

而如果那人是随机选择一个非黑的“物件”,那个物件正好是一个红的苹果,那么我们会得到一个分子大于分母的,几乎等于一的假分数。所以在这个情况下,看见一只红苹果确实会极微小地增加我们对“乌鸦都是黑色的”的信任度。

其实,随着一个人看到的不是黑色的东西的增加(并发现其中没有乌鸦),“乌鸦都是黑色的”的几率会趋向于1。

相关

  • 脑下腺脑下垂体(法语、德语: Hypophyse,英语:pituitary gland,亦称为脑垂体)位于脑底部的中央位置,在蝶骨中的蝶鞍内,它的上方有视神经经过,两侧被海绵静脉窦所包围,它的底部为蝶窦及鼻咽。
  • 核结合能核结合能(英语:Nuclear binding energy),又称为原子能或核能,是由组成原子核的粒子之间发生的反应释放出的能量。原子能比化学反应中释放的热能要大将近5千万倍:铀核裂变的这种原
  • 评书评书,又称说书,湖北、广东粤语地区及闽南语地区称讲古,在四川称为讲书,古称说话,是中国东北、华北、 两广、湖广、四川一带一种口头讲说的表演形式,在宋代开始流行。各地的说书人
  • 红绿色盲色盲(英语:Color blindness),又称色觉辨认障碍(英语:Color vision deficiency),是指看见颜色及辨别颜色的能力减退的状况。色盲有可能造成学习困难 ,购买水果、挑选衣物,及辨识交通号
  • 伊凡三世伊凡三世·瓦西里耶维奇(俄语:Иван III Васильевич,罗马化:Ivan III Vasil’evič,1440年1月22日-1505年10月17日),通称为伊凡大帝。留里克王朝成员,出身自留里克-莫洛
  • 洁齿剂洁齿剂,指专用于齿部的清洁剂。最普遍的洁齿剂为膏状或凝胶状,并以长条软管容器保存,称作牙膏;另外亦有粉末(牙粉)及液体(漱口水)等型态。牙膏为摩擦剂,用来移除牙齿表面的牙菌斑及食
  • 沈丹客运专线.mw-parser-output .RMbox{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.2)}.mw-parser-output .RMinline{float:none
  • 凤纲凤纲,汉朝籍,渔阳人,善采草药自炼仙丹。传说他常采百草花以水渍封泥之,自正月开始,到九月末止采制,埋100天,煎成丸状。刚死者以药纳口中,可救活。他常服此药,至数百岁不老,后“成仙”
  • 欧盟军事欧盟军(EUFOR)是欧洲联盟一种象征性的军事联盟,但共同安全与防务政策比普通国与国间的军事同盟更深化,有共同的指挥体系和情报连结,在必要时组成单一军队,然而目前从未在真实战争
  • 诺唯真邮轮诺唯真邮轮 (Norwegian Cruise Line) 是一间邮轮公司,成立于1966年,总部设于美国佛罗里达州戴德县。现时连同最新加入之大洋邮轮及丽晶七海邮轮所拥有合共23艘已投入服务的邮