在物理学上,欧拉方程统治刚体的转动。我们可以选取相对于惯量的主轴坐标为体坐标轴系。这使得计算得以简化,因为我们现在可以将角动量的变化分成分别描述对角化,则分量形式为。从而,欧拉方程变为如下分量形式
方程左边为0时,还是有非平凡解:无力矩进动。
该方程也可以使用在坐标轴不在物体上的场合,不再连接到物体本身。是围绕固定坐标轴的转动而不是物体本身的转动。但是,所选的轴必须还是主轴,因为它是对角化的必要条件。这个形式的欧拉方程对于有旋转对称性的物体很有用,因为有些主轴的选取是自由的。
在物理学上,欧拉方程统治刚体的转动。我们可以选取相对于惯量的主轴坐标为体坐标轴系。这使得计算得以简化,因为我们现在可以将角动量的变化分成分别描述对角化,则分量形式为。从而,欧拉方程变为如下分量形式
方程左边为0时,还是有非平凡解:无力矩进动。
该方程也可以使用在坐标轴不在物体上的场合,不再连接到物体本身。是围绕固定坐标轴的转动而不是物体本身的转动。但是,所选的轴必须还是主轴,因为它是对角化的必要条件。这个形式的欧拉方程对于有旋转对称性的物体很有用,因为有些主轴的选取是自由的。