首页 >
直纹曲面
✍ dations ◷ 2025-06-07 20:02:39 #直纹曲面
在几何学中,如果一个曲面上的任意一点上均有至少一条直线经过,则称该曲面为直纹曲面(英语:Ruled Surface)。另一种常见的说法是,如果一个曲面可以由一条直线通过连续运动构成,则可称其为直纹曲面。以三维欧几里德空间为例,最常见的直纹曲面是平面、柱面和锥面。著名的莫比乌斯环也是直纹曲面。假如一个曲面上的任意一点均有两条不同的直线经过,那么称该曲面为双重直纹曲面(英语:Doubly Ruled Surface)。双曲抛物面和单叶双曲面(右图)即为双重直纹曲面的典型例子。对于曲面上每个点均有三条或更多的直线经过的曲面,可称为三重和多重直纹曲面。不过在三维欧几里得空间中,除了平面以外,不存在这样的直纹曲面。如果将直纹曲面看作一条连续运动的直线所经过的点, 那么可将曲面表达为一个如下述形式的参数方程:其中
S
(
t
,
u
)
{displaystyle S(t,u)}
为面上的任意点,
p
(
t
)
{displaystyle p(t)}
为沿着面上一曲线移动之点,
r
(
t
)
{displaystyle r(t)}
为随
t
{displaystyle t}
变动之单位向量。举例来说,如果我们用下列式子则可得莫比乌斯带。另一种参数表示法为:其中
p
{displaystyle p}
及
q
{displaystyle q}
为两条处于面上之不相交曲线。当
p
(
t
)
{displaystyle p(t)}
及
q
(
t
)
{displaystyle q(t)}
以定速沿着二歪斜线移动时,
S
{displaystyle S}
为一双曲抛物面或是单叶双曲面。可展曲面即为高斯曲率处处为零的曲面。另一种常见的表述方法是,一个可展曲面的每一部分都可以不经压缩或者拉伸而展开成为一个平面。三维欧氏空间中的完备可展曲面一定是直纹曲面。然而,相同前提下的直纹曲面不一定是可展曲面,单叶双曲面便是一例。四维欧氏空间存在不是直纹曲面的可展曲面。大多数热力发电厂的冷却塔结构都是单叶双曲面形状。由于单叶双曲面是一种双重直纹曲面(Ruled surface),它可以用直的钢梁建造。这样既可减少风的阻力,又可以用最少的材料来维持结构的完整。
相关
- 咳嗽药止咳药是指治疗咳嗽的药品,通常为片状(亦有含化的)、溶液和混悬液。部分止咳水含有可待因或麻黄碱,过量服用会使人产生欣快感,故被滥用者称为摇头水),泛指用于止咳的所有药水,包括医
- 摩尔摩尔(拉丁文“一团”),是物质的量的国际单位,符号为mol。1摩尔是指化学物质所含基本微粒个数等于6.02214076×1023,即阿伏伽德罗常数。使用摩尔时,应指明基本微粒,可以是分子、原子
- 蜡疗蜡疗,属于物理治疗中热疗的一种。主要用于于治疗慢性关节炎,神经病变等。原理为使用石蜡包覆患部,传导热能以进行热疗。蜡疗在中国医学中已行之有年,《本草纲目/虫部》中记载:“
- 罗德西亚人罗得西亚人(学名:Homo rhodesiensis)是可能的人族。其他在形态上相似的遗骸亦在南部非洲、东非及北非发现。罗得西亚人的遗骸估计属于12.5-60万年前。在非洲于60万年前后的阿舍
- 蒸汽朋克蒸汽朋克(英语:Steampunk)是一种流行于20世纪80年代至90年代初的科幻题材,显著特征为故事都设定于一个蒸气科技达到巅峰的架空世界。这类故事对距今已较遥远的工业革命时代的科
- 皮埃尔·保罗·帕索里尼皮埃尔·保罗·帕索里尼(Pier Paolo Pasolini,1922年3月5日-1975年11月2日),意大利作家、诗人、后新现实主义时代导演。他的父亲是一名狂热的法西斯军官,母亲是一位墨索里尼的反对
- 克伦特罗克伦特罗(Clenbuterol),是一种β2-肾上腺素受体促效剂(β2-adrenergic agonist),类似麻黄素(Ephedrine)作用,临床上经常用来治疗慢性阻塞性肺疾(COPD),亦被作为缓和气喘急性发作时的支气
- 中王国第八第十中王国时期是古埃及历史上的一个时期,包括第十一、第十二、第十三与第十四王朝,通常划定在前2133-1786年,但严格地说,应该从第十一王朝的孟图霍特普二世时代(约前2060-2010
- 荷兰榆荷兰榆(Ulmus × hollandica)是分布于欧洲的无毛榆(Ulmus glabra)和欧洲光叶榆(Ulmus minor)自然杂交产生一种榆,后来经过人工栽培其分布范围又进一步扩大。其形态介于无毛榆和欧洲
- 圣伯多禄锁链堂圣伯多禄锁链堂(意大利语:San Pietro in Vincoli)是意大利罗马市的一座罗马天主教次级圣殿与司铎级枢机领衔教堂 ,现任司铎级枢机为美国籍的唐纳德·乌尔。教堂以米开朗基罗的梅