首页 >
直纹曲面
✍ dations ◷ 2025-11-16 07:14:04 #直纹曲面
在几何学中,如果一个曲面上的任意一点上均有至少一条直线经过,则称该曲面为直纹曲面(英语:Ruled Surface)。另一种常见的说法是,如果一个曲面可以由一条直线通过连续运动构成,则可称其为直纹曲面。以三维欧几里德空间为例,最常见的直纹曲面是平面、柱面和锥面。著名的莫比乌斯环也是直纹曲面。假如一个曲面上的任意一点均有两条不同的直线经过,那么称该曲面为双重直纹曲面(英语:Doubly Ruled Surface)。双曲抛物面和单叶双曲面(右图)即为双重直纹曲面的典型例子。对于曲面上每个点均有三条或更多的直线经过的曲面,可称为三重和多重直纹曲面。不过在三维欧几里得空间中,除了平面以外,不存在这样的直纹曲面。如果将直纹曲面看作一条连续运动的直线所经过的点, 那么可将曲面表达为一个如下述形式的参数方程:其中
S
(
t
,
u
)
{displaystyle S(t,u)}
为面上的任意点,
p
(
t
)
{displaystyle p(t)}
为沿着面上一曲线移动之点,
r
(
t
)
{displaystyle r(t)}
为随
t
{displaystyle t}
变动之单位向量。举例来说,如果我们用下列式子则可得莫比乌斯带。另一种参数表示法为:其中
p
{displaystyle p}
及
q
{displaystyle q}
为两条处于面上之不相交曲线。当
p
(
t
)
{displaystyle p(t)}
及
q
(
t
)
{displaystyle q(t)}
以定速沿着二歪斜线移动时,
S
{displaystyle S}
为一双曲抛物面或是单叶双曲面。可展曲面即为高斯曲率处处为零的曲面。另一种常见的表述方法是,一个可展曲面的每一部分都可以不经压缩或者拉伸而展开成为一个平面。三维欧氏空间中的完备可展曲面一定是直纹曲面。然而,相同前提下的直纹曲面不一定是可展曲面,单叶双曲面便是一例。四维欧氏空间存在不是直纹曲面的可展曲面。大多数热力发电厂的冷却塔结构都是单叶双曲面形状。由于单叶双曲面是一种双重直纹曲面(Ruled surface),它可以用直的钢梁建造。这样既可减少风的阻力,又可以用最少的材料来维持结构的完整。
相关
- 寡突胶质细胞寡突胶质细胞(Oligodendrocyte)是一种神经胶质细胞,最早由西班牙医学家皮奥·戴尔·里奥·霍尔特加(英语:Pío del Río Hortega)于1921年报导。寡突胶质细胞的主要功能是在中枢神
- 吕嫩费奥多尔·吕嫩(Feodor Felix Konrad Lynen,1911年4月6日-1979年8月6日)生卒于慕尼黑,德国生物化学家,1964年诺贝尔生理学或医学奖得主。1901年:贝林 1902年:罗斯 1903年:芬森
- 黄土高原黄土高原的范围在中国北方太行山以西,乌鞘岭以东,秦岭以北,长城以南,面积约有65万平方千米,占中国面积7%左右。其海拔在1000至2000米之间,高原包括陕西省、山西省、宁夏回族自治区
- 狗牙根狗牙根(学名:Cynodon dactylon),亦称绊根草(植物名实图考)、铁线草、爬根草、咸沙草,多年生草本植物。狗牙根秆常匍匐地面上,节着土易生根,初夏抽花穗时,秆始上伸,顶生3-6枚穗状花序排
- Hypatia希帕提娅(古希腊语:Ὑπατία,生于约350年-370年之间,死于415年3月),又译作海芭夏、海帕西娅,著名的希腊化古埃及新柏拉图主义学者,是当时名重一时、广受欢迎的女性哲学家、数学家
- 杰弗里·辛顿杰弗里·埃弗里斯特·辛顿,FRS(英语:Geoffrey Everest Hinton,1947年12月6日-),英国出生的加拿大计算机学家和心理学家,多伦多大学教授。以其在类神经网络方面的贡献闻名。辛顿是反
- 黄赤交角转轴倾角是行星的自转轴相对于轨道平面的倾斜角度,也称为倾角(obliquity)或轴交角(axial inclination),在天文学,是以自转轴与穿过行星的中心点并垂直于轨道平面的直线之间所夹的角
- 沙维特运载火箭沙维特运载火箭(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","
- 纯种马纯种马(英文:Thoroughbred)是一种为了赛马而刻意培育出来的马的品种。虽然广义的“纯种马”也可以指任何同一品种交配所生的马,但在育马和赛马中所称的“纯种马”一般只指这一种
- 辉发河辉发河(满语:ᡥᠣᡳᡶᠠ ᠪᡳᡵᠠ,转写:Hoifa bira)位于中国东北地区中部,是第二松花江左岸支流。辉发河上游也称大柳河,古时曾名卫乐江(韦泺江)、回跋江、回霸江、灰扒江。全长267.7
