二元关系

✍ dations ◷ 2025-07-09 16:16:06 #二元关系
数学上,二元关系(英语:Binary relation,或简称关系)用于讨论两种物件的连系。诸如算术中的“大于”及“等于”、几何学中的“相似”或集合论中的“为……之元素”、“为……之子集”。集合 X {displaystyle X} 与集合 Y {displaystyle Y} 上的二元关系是 R = ( X , Y , G ( R ) ) {displaystyle R=(X,Y,G(R))} ,当中 G ( R ) {displaystyle G(R)} ,称为 R {displaystyle R} 的图,是笛卡儿积 X × Y {displaystyle Xtimes Y} 的子集。若 ( x , y ) ∈ G ( R ) {displaystyle (x,y)in G(R)} 则称 x {displaystyle x} 与 y {displaystyle y} 有关系 R {displaystyle R} ,并记作 x R y {displaystyle xRy} 或 R ( x , y ) {displaystyle R(x,y)} 。但经常地我们把关系与其图等价起来,即若 R ⊆ X × Y {displaystyle Rsubseteq Xtimes Y} 则 R {displaystyle R} 是一个关系。例子:有四件物件{球,糖,车,枪}及四个人{甲,乙,丙,丁}。若甲拥有球, 乙拥有糖,及丁拥有车-即无人有枪及丙一无所有-则二元关系为“……拥有……”便是其中 R {displaystyle R} 的首项是物件的集合,次项是人的集合,而末项是由有序对(物件,主人) 组成的集合。比如有序对(球,甲)以球 R {displaystyle R} 甲表示, 代表球为甲拥有。不同的关系可以有相同的图。以下的关系中人人皆是物主,所以与 R {displaystyle R} 不同,但两者有相同的图。话虽如此,我们很多时候索性把 R {displaystyle R} 定义为 G ( R ) {displaystyle G(R)} 而“有序对 ( x , y ) ∈ G ( R ) {displaystyle (x,y)in G(R)} ”亦即是“ ( x , y ) ∈ R {displaystyle (x,y)in R} ”。二元关系可看作成二元函数,这种二元函数把输入元 x ∈ X {displaystyle xin X} 及 y ∈ Y {displaystyle yin Y} 视为独立变数并求真伪值(包括“有序对 ( x , y ) {displaystyle (x,y)} 是或非二元关系中的一元”此一问题)。若 X = Y {displaystyle X=Y} ,则称 R {displaystyle R} 为 X {displaystyle X} 上的关系。设 A {displaystyle A} 是一个集合,则设 X = { x 1 , x 2 , … , x n } {displaystyle X={x_{1},x_{2},ldots ,x_{n}}} 及 Y = { y 1 , y 2 , … , y m } {displaystyle Y={y_{1},y_{2},ldots ,y_{m}}} , R {displaystyle R} 是 X {displaystyle X} Y {displaystyle Y} 上的关系,令则0,1矩阵称为 R {displaystyle R} 的关系矩阵,记作 M R {displaystyle M_{R}} 。设 A = { x 1 , x 2 , … , x n } {displaystyle A={x_{1},x_{2},ldots ,x_{n}}} , R {displaystyle R} 是 A {displaystyle A} 上的关系,令图 G = ( V , E ) {displaystyle G=(V,E)} ,其中顶点集合 V = A {displaystyle V=A} ,边集合为 E {displaystyle E} ,且对于任意的 x i , x j ∈ V {displaystyle x_{i},x_{j}in V} ,满足 ( x i , x j ) ∈ E {displaystyle (x_{i},x_{j})in E} 当且仅当 ( x i , x j ) ∈ R {displaystyle (x_{i},x_{j})in R} 。则称图 G {displaystyle G} 是关系 R {displaystyle R} 的关系图,记作 G R {displaystyle G_{R}} 。关系的基本运算有以下几种:关系的性质主要有以下五种:设 R {displaystyle R} 为集合 A {displaystyle A} 上的关系,下面给出 R {displaystyle R} 的五种性质成立的充要条件:设 R {displaystyle R} 是非空集合 A {displaystyle A} 上的关系, R {displaystyle R} 的自反(对称或传递)闭包是 A {displaystyle A} 上的关系 R ′ {displaystyle R'} ,满足一般将 R {displaystyle R} 的自反闭包记作 r ( R ) {displaystyle r(R)} ,对称闭包记作 s ( R ) {displaystyle s(R)} ,传递闭包记作 t ( R ) {displaystyle t(R)} 。下列三个定理给出了构造闭包的方法:对于有限集合 A {displaystyle A} 上的关系 R {displaystyle R} ,存在一个正整数 r {displaystyle r} ,使得求传递闭包是图论中一个非常重要的问题,例如给定了一个城市的交通地图,可利用求传递闭包的方法获知任意两个地点之间是否有路相连通。可以直接利用关系矩阵相乘来求传递闭包,但那样做复杂度比较高;好一点的办法是在计算矩阵相乘的时候用分治法降低时间复杂度;但最好的方法是利用基于动态规划的Floyd-Warshall算法来求传递闭包。

相关

  • 放线菌放线菌(Actinobacteria)是一类革兰氏阳性细菌,可栖息于水中或陆地上,虽然一开始被认定为土壤菌,但淡水中的种类可能比陆地上的更丰富,它们具有分支的纤维和孢子,依靠孢子繁殖,表面上
  • 大英百科第11版《大英百科全书第十一版》(英语:Encyclopædia Britannica Eleventh Edition),或作《1911年版大英百科全书》,是《大英百科全书》最经典的一个版本,共29卷。它的出版也反映出美国
  • 萨姆风萨姆风 又称西蒙风。在阿拉伯半岛和撒哈拉出现的极端干热的小规模旋风。温度常达55℃,而温度有时低于10%。萨姆风是在晴朗无云、地面急剧增热时所产生的。
  • Mo4d5 5s12, 8, 18, 13, 1蒸气压第一:684.3 kJ·mol−1 第二:1560 kJ·mol−1 第三:2618 kJ·mol主条目:钼的同位素钼(Molybdenum)是一种化学元素,它的化学符号是Mo,它的原子序数
  • 类型论在最广泛的层面上,类型论(英语:type theory)是关注把实体分类到叫做类型的搜集中的数学和逻辑分支。在这种意义上,它与类型的形而上学概念有关。现代类型论在部分上是响应罗素悖
  • 西班牙流行性感冒1918年流感大流行(英语:1918 flu pandemic)是于1918年1月至1920年12月间爆发的全球性甲型H1N1流感疫情,此次疫情造成全世界5亿人感染,1.7千万至5千万死亡,传播范围达到太平洋群岛
  • 性别重置手术性别重置手术(英语:Sex reassignment surgery,缩写:SRS),也称为性别还原手术、变性手术、性转换手术(英语:Transsexual surgery)等等,是一项外科技术,也是一种阉割手术,通过这种手术程序
  • .mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 新古典主义新古典主义(英语:Neoclassicism),是一种新的复古运动。兴起于18世纪的罗马,并迅速在西方世界扩展的艺术运动,影响了装饰艺术、建筑、绘画、文学、戏剧和音乐等众多领域。新古典主
  • 图卢兹市政厅图卢兹市政厅(Capitole de Toulouse)是法国南部城市图卢兹的市政厅。图卢兹市政厅始建于1190年,为这个财富和影响力日益增强的省提供一个政府所在地。"Capitole"得名于罗马卡比