首页 >
二元关系
✍ dations ◷ 2025-08-21 22:46:04 #二元关系
数学上,二元关系(英语:Binary relation,或简称关系)用于讨论两种物件的连系。诸如算术中的“大于”及“等于”、几何学中的“相似”或集合论中的“为……之元素”、“为……之子集”。集合
X
{displaystyle X}
与集合
Y
{displaystyle Y}
上的二元关系是
R
=
(
X
,
Y
,
G
(
R
)
)
{displaystyle R=(X,Y,G(R))}
,当中
G
(
R
)
{displaystyle G(R)}
,称为
R
{displaystyle R}
的图,是笛卡儿积
X
×
Y
{displaystyle Xtimes Y}
的子集。若
(
x
,
y
)
∈
G
(
R
)
{displaystyle (x,y)in G(R)}
则称
x
{displaystyle x}
与
y
{displaystyle y}
有关系
R
{displaystyle R}
,并记作
x
R
y
{displaystyle xRy}
或
R
(
x
,
y
)
{displaystyle R(x,y)}
。但经常地我们把关系与其图等价起来,即若
R
⊆
X
×
Y
{displaystyle Rsubseteq Xtimes Y}
则
R
{displaystyle R}
是一个关系。例子:有四件物件{球,糖,车,枪}及四个人{甲,乙,丙,丁}。若甲拥有球,
乙拥有糖,及丁拥有车-即无人有枪及丙一无所有-则二元关系为“……拥有……”便是其中
R
{displaystyle R}
的首项是物件的集合,次项是人的集合,而末项是由有序对(物件,主人)
组成的集合。比如有序对(球,甲)以球
R
{displaystyle R}
甲表示,
代表球为甲拥有。不同的关系可以有相同的图。以下的关系中人人皆是物主,所以与
R
{displaystyle R}
不同,但两者有相同的图。话虽如此,我们很多时候索性把
R
{displaystyle R}
定义为
G
(
R
)
{displaystyle G(R)}
而“有序对
(
x
,
y
)
∈
G
(
R
)
{displaystyle (x,y)in G(R)}
”亦即是“
(
x
,
y
)
∈
R
{displaystyle (x,y)in R}
”。二元关系可看作成二元函数,这种二元函数把输入元
x
∈
X
{displaystyle xin X}
及
y
∈
Y
{displaystyle yin Y}
视为独立变数并求真伪值(包括“有序对
(
x
,
y
)
{displaystyle (x,y)}
是或非二元关系中的一元”此一问题)。若
X
=
Y
{displaystyle X=Y}
,则称
R
{displaystyle R}
为
X
{displaystyle X}
上的关系。设
A
{displaystyle A}
是一个集合,则设
X
=
{
x
1
,
x
2
,
…
,
x
n
}
{displaystyle X={x_{1},x_{2},ldots ,x_{n}}}
及
Y
=
{
y
1
,
y
2
,
…
,
y
m
}
{displaystyle Y={y_{1},y_{2},ldots ,y_{m}}}
,
R
{displaystyle R}
是
X
{displaystyle X}
Y
{displaystyle Y}
上的关系,令则0,1矩阵称为
R
{displaystyle R}
的关系矩阵,记作
M
R
{displaystyle M_{R}}
。设
A
=
{
x
1
,
x
2
,
…
,
x
n
}
{displaystyle A={x_{1},x_{2},ldots ,x_{n}}}
,
R
{displaystyle R}
是
A
{displaystyle A}
上的关系,令图
G
=
(
V
,
E
)
{displaystyle G=(V,E)}
,其中顶点集合
V
=
A
{displaystyle V=A}
,边集合为
E
{displaystyle E}
,且对于任意的
x
i
,
x
j
∈
V
{displaystyle x_{i},x_{j}in V}
,满足
(
x
i
,
x
j
)
∈
E
{displaystyle (x_{i},x_{j})in E}
当且仅当
(
x
i
,
x
j
)
∈
R
{displaystyle (x_{i},x_{j})in R}
。则称图
G
{displaystyle G}
是关系
R
{displaystyle R}
的关系图,记作
G
R
{displaystyle G_{R}}
。关系的基本运算有以下几种:关系的性质主要有以下五种:设
R
{displaystyle R}
为集合
A
{displaystyle A}
上的关系,下面给出
R
{displaystyle R}
的五种性质成立的充要条件:设
R
{displaystyle R}
是非空集合
A
{displaystyle A}
上的关系,
R
{displaystyle R}
的自反(对称或传递)闭包是
A
{displaystyle A}
上的关系
R
′
{displaystyle R'}
,满足一般将
R
{displaystyle R}
的自反闭包记作
r
(
R
)
{displaystyle r(R)}
,对称闭包记作
s
(
R
)
{displaystyle s(R)}
,传递闭包记作
t
(
R
)
{displaystyle t(R)}
。下列三个定理给出了构造闭包的方法:对于有限集合
A
{displaystyle A}
上的关系
R
{displaystyle R}
,存在一个正整数
r
{displaystyle r}
,使得求传递闭包是图论中一个非常重要的问题,例如给定了一个城市的交通地图,可利用求传递闭包的方法获知任意两个地点之间是否有路相连通。可以直接利用关系矩阵相乘来求传递闭包,但那样做复杂度比较高;好一点的办法是在计算矩阵相乘的时候用分治法降低时间复杂度;但最好的方法是利用基于动态规划的Floyd-Warshall算法来求传递闭包。
相关
- 单链DNA病毒脱氧核糖核酸病毒(英语:DNA virus),又称DNA病毒,其遗传物质为DNA。一般为正链DNA病毒。医学导航: 病毒病病毒(蛋白质)/分类cutn/syst (hppv/艾滋病, 流感/疱疹/人畜共患)/人名体
- 缺血缺血(Ischemia)是描述组织供血量不足,进而导致缺氧及养分的情形。缺血一般由血管问题所导致,也可能因血管收缩、血栓形成,或栓塞,导致局部贫血所导致。缺血除了导致缺氧以外及缺乏
- 代谢性疾病代谢综合征(metabolic syndrome)指生理代谢层面的心血管危险因子的聚集现象,这些危险因子主要包括高血压(或血压偏高但未达高血压诊断标准)、血脂异常(dyslipidemia)(包含血中三酸甘
- 三联疫苗三联疫苗可以指:
- 孟-高棉语族孟高棉语族是东南亚的语言集合,包括孟语和高棉语等多种语言。按照传统的分类,这个语族与印度的蒙达语族(又译扪达语族)构成南亚语系。新近的分类已经抛弃这种二分法:Diffloth(2005
- 詹姆斯·兰迪詹姆士·赖迪(英语:James Randi,出生时全名为Randall James Hamilton Zwinge,1928年8月7日-),美国藉加拿大裔舞台魔术师、科学怀疑论者,而且是其同名基金会,詹姆士· 赖迪教育基金会
- 硫酸长春碱硫酸长春碱(化学式:C46H60N4O13S)常温下是白色固体,可用作抗肿瘤药,用于治疗何杰金氏病和绒毛膜上皮癌,对淋巴肉瘤、急性白血病、乳腺癌等也有一定疗效。与微管黏合,抑制微管合成作
- 木兰类植物木兰类植物(学名:magnoliids)是APG II 分类法中用来表示被子植物中第三大类群,即不属于单子叶植物,也不属于真双子叶植物,而是它们的外类群,独成一支。根据APG II及III分类法,木兰类
- 非编码非编码核糖核酸(英语:non-coding RNA),缩写ncRNA,是指各种不翻译成蛋白质的RNA分子。过去也称此类RNA为小核糖核酸(sRNA)。不过有些ncRNA分子其实相当大。其他较少使用的同义词还有
- CCd有机镉化合物是含有碳-镉键的一类金属有机化合物。格氏试剂和有机锂试剂与卤化镉反应,可以得到二烃基镉,如:炔烃和二甲基镉或二氨基镉反应,可以得到镉的炔基化合物:芳基镉化合物