首页 >
二元关系
✍ dations ◷ 2025-05-13 11:13:15 #二元关系
数学上,二元关系(英语:Binary relation,或简称关系)用于讨论两种物件的连系。诸如算术中的“大于”及“等于”、几何学中的“相似”或集合论中的“为……之元素”、“为……之子集”。集合
X
{displaystyle X}
与集合
Y
{displaystyle Y}
上的二元关系是
R
=
(
X
,
Y
,
G
(
R
)
)
{displaystyle R=(X,Y,G(R))}
,当中
G
(
R
)
{displaystyle G(R)}
,称为
R
{displaystyle R}
的图,是笛卡儿积
X
×
Y
{displaystyle Xtimes Y}
的子集。若
(
x
,
y
)
∈
G
(
R
)
{displaystyle (x,y)in G(R)}
则称
x
{displaystyle x}
与
y
{displaystyle y}
有关系
R
{displaystyle R}
,并记作
x
R
y
{displaystyle xRy}
或
R
(
x
,
y
)
{displaystyle R(x,y)}
。但经常地我们把关系与其图等价起来,即若
R
⊆
X
×
Y
{displaystyle Rsubseteq Xtimes Y}
则
R
{displaystyle R}
是一个关系。例子:有四件物件{球,糖,车,枪}及四个人{甲,乙,丙,丁}。若甲拥有球,
乙拥有糖,及丁拥有车-即无人有枪及丙一无所有-则二元关系为“……拥有……”便是其中
R
{displaystyle R}
的首项是物件的集合,次项是人的集合,而末项是由有序对(物件,主人)
组成的集合。比如有序对(球,甲)以球
R
{displaystyle R}
甲表示,
代表球为甲拥有。不同的关系可以有相同的图。以下的关系中人人皆是物主,所以与
R
{displaystyle R}
不同,但两者有相同的图。话虽如此,我们很多时候索性把
R
{displaystyle R}
定义为
G
(
R
)
{displaystyle G(R)}
而“有序对
(
x
,
y
)
∈
G
(
R
)
{displaystyle (x,y)in G(R)}
”亦即是“
(
x
,
y
)
∈
R
{displaystyle (x,y)in R}
”。二元关系可看作成二元函数,这种二元函数把输入元
x
∈
X
{displaystyle xin X}
及
y
∈
Y
{displaystyle yin Y}
视为独立变数并求真伪值(包括“有序对
(
x
,
y
)
{displaystyle (x,y)}
是或非二元关系中的一元”此一问题)。若
X
=
Y
{displaystyle X=Y}
,则称
R
{displaystyle R}
为
X
{displaystyle X}
上的关系。设
A
{displaystyle A}
是一个集合,则设
X
=
{
x
1
,
x
2
,
…
,
x
n
}
{displaystyle X={x_{1},x_{2},ldots ,x_{n}}}
及
Y
=
{
y
1
,
y
2
,
…
,
y
m
}
{displaystyle Y={y_{1},y_{2},ldots ,y_{m}}}
,
R
{displaystyle R}
是
X
{displaystyle X}
Y
{displaystyle Y}
上的关系,令则0,1矩阵称为
R
{displaystyle R}
的关系矩阵,记作
M
R
{displaystyle M_{R}}
。设
A
=
{
x
1
,
x
2
,
…
,
x
n
}
{displaystyle A={x_{1},x_{2},ldots ,x_{n}}}
,
R
{displaystyle R}
是
A
{displaystyle A}
上的关系,令图
G
=
(
V
,
E
)
{displaystyle G=(V,E)}
,其中顶点集合
V
=
A
{displaystyle V=A}
,边集合为
E
{displaystyle E}
,且对于任意的
x
i
,
x
j
∈
V
{displaystyle x_{i},x_{j}in V}
,满足
(
x
i
,
x
j
)
∈
E
{displaystyle (x_{i},x_{j})in E}
当且仅当
(
x
i
,
x
j
)
∈
R
{displaystyle (x_{i},x_{j})in R}
。则称图
G
{displaystyle G}
是关系
R
{displaystyle R}
的关系图,记作
G
R
{displaystyle G_{R}}
。关系的基本运算有以下几种:关系的性质主要有以下五种:设
R
{displaystyle R}
为集合
A
{displaystyle A}
上的关系,下面给出
R
{displaystyle R}
的五种性质成立的充要条件:设
R
{displaystyle R}
是非空集合
A
{displaystyle A}
上的关系,
R
{displaystyle R}
的自反(对称或传递)闭包是
A
{displaystyle A}
上的关系
R
′
{displaystyle R'}
,满足一般将
R
{displaystyle R}
的自反闭包记作
r
(
R
)
{displaystyle r(R)}
,对称闭包记作
s
(
R
)
{displaystyle s(R)}
,传递闭包记作
t
(
R
)
{displaystyle t(R)}
。下列三个定理给出了构造闭包的方法:对于有限集合
A
{displaystyle A}
上的关系
R
{displaystyle R}
,存在一个正整数
r
{displaystyle r}
,使得求传递闭包是图论中一个非常重要的问题,例如给定了一个城市的交通地图,可利用求传递闭包的方法获知任意两个地点之间是否有路相连通。可以直接利用关系矩阵相乘来求传递闭包,但那样做复杂度比较高;好一点的办法是在计算矩阵相乘的时候用分治法降低时间复杂度;但最好的方法是利用基于动态规划的Floyd-Warshall算法来求传递闭包。
相关
- 分子克隆分子克隆(英语:Molecular cloning,又译分子纯化繁殖),而克隆英文字面上的意思,其实就是分子克隆,定义是指分离一个已知DNA序列,并以in vivo(活体内)方式获得许多复制品的过程。这一复
- 碘4d10 5s2 5p52, 8, 18, 18, 7蒸气压((正交))第一:1008.4 kJ·mol−1 第二:1845.9 kJ·mol−1 第三:3180 kJ·mol主条目:碘的同位素碘(Iodine)是一种非金属化学元素,元素符号是I
- 中子镜中子反射体是指可以反射中子的任何材料。如石墨、铍、钢、碳化钨或其他。这里的反射指的是弹性散射而非镜反射。中子反射物料可使原本未达临界质量之可裂变物质达到临界质量
- 后述心电图(Electrocardiography、ECG 或者 EKG)是一种经胸腔的以时间为单位记录心脏的电生理活动,并通过皮肤上的电极捕捉并记录下来的诊疗技术。这是一种无创性的记录方式。Elect
- 玻尔效应玻尔效应(英语:Bohr effect),1904年由丹麦生理学家克里斯蒂安·玻尔首先提出,即:氢离子(低 pH)和二氧化碳会降低血红蛋白与氧气的亲和力,促进血红蛋白释放氧气。产生该效应的原因为质
- 兰州大学坐标:36°2′47.8483677402″N 103°51′29.032959938″E / 36.046624546594501°N 103.85806471109389°E / 36.046624546594501; 103.85806471109389兰州大学是中华人民共
- 風风部,为汉字索引中的部首之一,康熙字典214个部首中的第一百八十二个(九划的则为第七个)。就正体中文中,风部归于九划部首,而简体中文则归在四划。风部只以左方为部字。且无其他部
- 羊绒羊绒,指克什米尔山羊(英语:Cashmere goat)或其他种山羊身上的动物纤维,不同于羊毛。因克什米尔曾为向欧洲出口羊绒的集散地,所以西方语言中多直称羊绒为“克什米尔”。在西方国家,
- 慢病毒属慢病毒属(学名:Lentivirus)是反转录病毒科下的一个属,此属病毒的特征是有较长的时间的潜伏期,例如人类免疫缺陷病毒(HIV)、猴免疫缺陷病毒(SIV)、马传染性贫血(EIA)、 猫免疫缺陷
- 二磷酸鸟苷二磷酸鸟苷(Guanosine diphosphate,缩写GDP),也称鸟苷二磷酸,是一种核苷酸,组成物是焦磷酸基团、五碳糖、以及碱基鸟嘌呤。GDP是三磷酸鸟苷(GTP)经过去磷酸化之后的产物,催化此作用的