二元关系

✍ dations ◷ 2025-09-11 13:10:46 #二元关系
数学上,二元关系(英语:Binary relation,或简称关系)用于讨论两种物件的连系。诸如算术中的“大于”及“等于”、几何学中的“相似”或集合论中的“为……之元素”、“为……之子集”。集合 X {displaystyle X} 与集合 Y {displaystyle Y} 上的二元关系是 R = ( X , Y , G ( R ) ) {displaystyle R=(X,Y,G(R))} ,当中 G ( R ) {displaystyle G(R)} ,称为 R {displaystyle R} 的图,是笛卡儿积 X × Y {displaystyle Xtimes Y} 的子集。若 ( x , y ) ∈ G ( R ) {displaystyle (x,y)in G(R)} 则称 x {displaystyle x} 与 y {displaystyle y} 有关系 R {displaystyle R} ,并记作 x R y {displaystyle xRy} 或 R ( x , y ) {displaystyle R(x,y)} 。但经常地我们把关系与其图等价起来,即若 R ⊆ X × Y {displaystyle Rsubseteq Xtimes Y} 则 R {displaystyle R} 是一个关系。例子:有四件物件{球,糖,车,枪}及四个人{甲,乙,丙,丁}。若甲拥有球, 乙拥有糖,及丁拥有车-即无人有枪及丙一无所有-则二元关系为“……拥有……”便是其中 R {displaystyle R} 的首项是物件的集合,次项是人的集合,而末项是由有序对(物件,主人) 组成的集合。比如有序对(球,甲)以球 R {displaystyle R} 甲表示, 代表球为甲拥有。不同的关系可以有相同的图。以下的关系中人人皆是物主,所以与 R {displaystyle R} 不同,但两者有相同的图。话虽如此,我们很多时候索性把 R {displaystyle R} 定义为 G ( R ) {displaystyle G(R)} 而“有序对 ( x , y ) ∈ G ( R ) {displaystyle (x,y)in G(R)} ”亦即是“ ( x , y ) ∈ R {displaystyle (x,y)in R} ”。二元关系可看作成二元函数,这种二元函数把输入元 x ∈ X {displaystyle xin X} 及 y ∈ Y {displaystyle yin Y} 视为独立变数并求真伪值(包括“有序对 ( x , y ) {displaystyle (x,y)} 是或非二元关系中的一元”此一问题)。若 X = Y {displaystyle X=Y} ,则称 R {displaystyle R} 为 X {displaystyle X} 上的关系。设 A {displaystyle A} 是一个集合,则设 X = { x 1 , x 2 , … , x n } {displaystyle X={x_{1},x_{2},ldots ,x_{n}}} 及 Y = { y 1 , y 2 , … , y m } {displaystyle Y={y_{1},y_{2},ldots ,y_{m}}} , R {displaystyle R} 是 X {displaystyle X} Y {displaystyle Y} 上的关系,令则0,1矩阵称为 R {displaystyle R} 的关系矩阵,记作 M R {displaystyle M_{R}} 。设 A = { x 1 , x 2 , … , x n } {displaystyle A={x_{1},x_{2},ldots ,x_{n}}} , R {displaystyle R} 是 A {displaystyle A} 上的关系,令图 G = ( V , E ) {displaystyle G=(V,E)} ,其中顶点集合 V = A {displaystyle V=A} ,边集合为 E {displaystyle E} ,且对于任意的 x i , x j ∈ V {displaystyle x_{i},x_{j}in V} ,满足 ( x i , x j ) ∈ E {displaystyle (x_{i},x_{j})in E} 当且仅当 ( x i , x j ) ∈ R {displaystyle (x_{i},x_{j})in R} 。则称图 G {displaystyle G} 是关系 R {displaystyle R} 的关系图,记作 G R {displaystyle G_{R}} 。关系的基本运算有以下几种:关系的性质主要有以下五种:设 R {displaystyle R} 为集合 A {displaystyle A} 上的关系,下面给出 R {displaystyle R} 的五种性质成立的充要条件:设 R {displaystyle R} 是非空集合 A {displaystyle A} 上的关系, R {displaystyle R} 的自反(对称或传递)闭包是 A {displaystyle A} 上的关系 R ′ {displaystyle R'} ,满足一般将 R {displaystyle R} 的自反闭包记作 r ( R ) {displaystyle r(R)} ,对称闭包记作 s ( R ) {displaystyle s(R)} ,传递闭包记作 t ( R ) {displaystyle t(R)} 。下列三个定理给出了构造闭包的方法:对于有限集合 A {displaystyle A} 上的关系 R {displaystyle R} ,存在一个正整数 r {displaystyle r} ,使得求传递闭包是图论中一个非常重要的问题,例如给定了一个城市的交通地图,可利用求传递闭包的方法获知任意两个地点之间是否有路相连通。可以直接利用关系矩阵相乘来求传递闭包,但那样做复杂度比较高;好一点的办法是在计算矩阵相乘的时候用分治法降低时间复杂度;但最好的方法是利用基于动态规划的Floyd-Warshall算法来求传递闭包。

相关

  • 信仰疗法信仰治疗(英语:Faith healing),是指透过祈祷或宗教灵修的方式,对生理或心灵上的疾病,借着上帝或神灵的力量,进行医治及治疗。一些意见认为,宗教治疗的疗效,能间接提供有上帝或超自然
  • 两生类两栖动物(学名:Amphibia)是两栖纲生物的通称,又名两生动物,包括所有生没有卵壳的卵,拥有四肢的脊椎动物(蚓螈的四肢已退化)。两栖动物的皮肤裸露,表面没有鳞片、毛发等覆盖,但是可以分
  • 纽埃纽埃(又译纽威,纽埃语:Niuē)是位于太平洋中南部岛国,距离新西兰北部2,400公里;其西为汤加、以北是萨摩亚,以东则是邻国的库克群岛。纽埃国土为一椭圆形岛屿以及周围的珊瑚礁环绕组
  • 植物修复植物修复(英语:Phytoremediation,音标:/ˌfaɪtəʊrɪˌmiːdɪˈeɪʃən/) (Template:Ety) 是指利用植物修复受污染土壤的过程。植物修复是一种以植物为基础、具有成本效益的
  • D07(Antifungals for dermatological use)(Emollients and protectives)(Preparations for treatment of wounds and ulcers)(Antipruritics, including antihistamines, anesthetics,
  • 手腕腕(拉丁语:Articulatio radiocarpea;德语:Handgelenk;英语:Wrist)即是指手腕,为手掌与手臂连接的地方,在做运动前最好先运动手腕,因为手腕是最容易受伤的部位手腕经常被用来戴手表、手
  • 甾体的常见副作用甾体(英语:steroid)是属于脂类的一类,特征是有一个四环的母核。所有甾体都是从乙酰辅酶A生物合成路径所衍生的。不同的甾体在其附在环上的官能团有所不同,而其基本结构都是有一个
  • IPCC AR5 WG1政府间气候变化专门委员会(英语:Intergovernmental Panel on Climate Change,缩写IPCC;又译政府间气候变化专业委员会、跨政府气候变化委员会等)是一个附属于联合国之下的跨政府
  • 影片影片可能指:
  • 美国电影列表本表列出美国电影工业所出产的电影作品。因影片数量庞大,由2000年代美国电影开始分门别类,依年代排序另分出条目列表,再按电影片名英文原名字母顺序排列。注意:此列表刚刚开始建