首页 >
二元关系
✍ dations ◷ 2025-04-26 12:41:40 #二元关系
数学上,二元关系(英语:Binary relation,或简称关系)用于讨论两种物件的连系。诸如算术中的“大于”及“等于”、几何学中的“相似”或集合论中的“为……之元素”、“为……之子集”。集合
X
{displaystyle X}
与集合
Y
{displaystyle Y}
上的二元关系是
R
=
(
X
,
Y
,
G
(
R
)
)
{displaystyle R=(X,Y,G(R))}
,当中
G
(
R
)
{displaystyle G(R)}
,称为
R
{displaystyle R}
的图,是笛卡儿积
X
×
Y
{displaystyle Xtimes Y}
的子集。若
(
x
,
y
)
∈
G
(
R
)
{displaystyle (x,y)in G(R)}
则称
x
{displaystyle x}
与
y
{displaystyle y}
有关系
R
{displaystyle R}
,并记作
x
R
y
{displaystyle xRy}
或
R
(
x
,
y
)
{displaystyle R(x,y)}
。但经常地我们把关系与其图等价起来,即若
R
⊆
X
×
Y
{displaystyle Rsubseteq Xtimes Y}
则
R
{displaystyle R}
是一个关系。例子:有四件物件{球,糖,车,枪}及四个人{甲,乙,丙,丁}。若甲拥有球,
乙拥有糖,及丁拥有车-即无人有枪及丙一无所有-则二元关系为“……拥有……”便是其中
R
{displaystyle R}
的首项是物件的集合,次项是人的集合,而末项是由有序对(物件,主人)
组成的集合。比如有序对(球,甲)以球
R
{displaystyle R}
甲表示,
代表球为甲拥有。不同的关系可以有相同的图。以下的关系中人人皆是物主,所以与
R
{displaystyle R}
不同,但两者有相同的图。话虽如此,我们很多时候索性把
R
{displaystyle R}
定义为
G
(
R
)
{displaystyle G(R)}
而“有序对
(
x
,
y
)
∈
G
(
R
)
{displaystyle (x,y)in G(R)}
”亦即是“
(
x
,
y
)
∈
R
{displaystyle (x,y)in R}
”。二元关系可看作成二元函数,这种二元函数把输入元
x
∈
X
{displaystyle xin X}
及
y
∈
Y
{displaystyle yin Y}
视为独立变数并求真伪值(包括“有序对
(
x
,
y
)
{displaystyle (x,y)}
是或非二元关系中的一元”此一问题)。若
X
=
Y
{displaystyle X=Y}
,则称
R
{displaystyle R}
为
X
{displaystyle X}
上的关系。设
A
{displaystyle A}
是一个集合,则设
X
=
{
x
1
,
x
2
,
…
,
x
n
}
{displaystyle X={x_{1},x_{2},ldots ,x_{n}}}
及
Y
=
{
y
1
,
y
2
,
…
,
y
m
}
{displaystyle Y={y_{1},y_{2},ldots ,y_{m}}}
,
R
{displaystyle R}
是
X
{displaystyle X}
Y
{displaystyle Y}
上的关系,令则0,1矩阵称为
R
{displaystyle R}
的关系矩阵,记作
M
R
{displaystyle M_{R}}
。设
A
=
{
x
1
,
x
2
,
…
,
x
n
}
{displaystyle A={x_{1},x_{2},ldots ,x_{n}}}
,
R
{displaystyle R}
是
A
{displaystyle A}
上的关系,令图
G
=
(
V
,
E
)
{displaystyle G=(V,E)}
,其中顶点集合
V
=
A
{displaystyle V=A}
,边集合为
E
{displaystyle E}
,且对于任意的
x
i
,
x
j
∈
V
{displaystyle x_{i},x_{j}in V}
,满足
(
x
i
,
x
j
)
∈
E
{displaystyle (x_{i},x_{j})in E}
当且仅当
(
x
i
,
x
j
)
∈
R
{displaystyle (x_{i},x_{j})in R}
。则称图
G
{displaystyle G}
是关系
R
{displaystyle R}
的关系图,记作
G
R
{displaystyle G_{R}}
。关系的基本运算有以下几种:关系的性质主要有以下五种:设
R
{displaystyle R}
为集合
A
{displaystyle A}
上的关系,下面给出
R
{displaystyle R}
的五种性质成立的充要条件:设
R
{displaystyle R}
是非空集合
A
{displaystyle A}
上的关系,
R
{displaystyle R}
的自反(对称或传递)闭包是
A
{displaystyle A}
上的关系
R
′
{displaystyle R'}
,满足一般将
R
{displaystyle R}
的自反闭包记作
r
(
R
)
{displaystyle r(R)}
,对称闭包记作
s
(
R
)
{displaystyle s(R)}
,传递闭包记作
t
(
R
)
{displaystyle t(R)}
。下列三个定理给出了构造闭包的方法:对于有限集合
A
{displaystyle A}
上的关系
R
{displaystyle R}
,存在一个正整数
r
{displaystyle r}
,使得求传递闭包是图论中一个非常重要的问题,例如给定了一个城市的交通地图,可利用求传递闭包的方法获知任意两个地点之间是否有路相连通。可以直接利用关系矩阵相乘来求传递闭包,但那样做复杂度比较高;好一点的办法是在计算矩阵相乘的时候用分治法降低时间复杂度;但最好的方法是利用基于动态规划的Floyd-Warshall算法来求传递闭包。
相关
- ADCC作用ADCC作用(抗体依赖的细胞介导(媒介)的细胞毒性作用,英语:antibody-dependent cell-mediated cytotoxicity,缩写ADCC)是一种细胞介导的免疫防御机制,在靶细胞膜表面抗原结合了特异性
- 全血全血为标准捐血流程后所取得的人类血液,通常用于治疗大量出血、换血疗法(英语:exchange transfusion)与自体输血上。一单位的全血可提升受血者之血红蛋白浓度约10 g/L。在输全血
- 细菌学细菌学(英语:bacteriology),一个以研究细菌为主的学科,是微生物学的分支。主要的工作是辨认细菌、培养细菌、分类细菌种属、找出细菌种属的特征。它跟微生物学,有时候会被人当成同
- 鼠蹊部腹股沟、鼠蹊或鼠蹊部(拉丁语:regio inguinalis),是指人体腹部连接腿部交界处的凹沟,其附近区域称为腹股沟;位于大腿内侧生殖器两旁,在人体解剖学上属于腹部。腹股沟部有深、浅的淋
- 皇家医学会英国皇家医学会(Royal Society of Medicine)为一个以提供医学培训为主的专业会员制学会。学会始创于1805年,并于1907年获得皇家特许状。学会位于首都伦敦。
- 肾小球基底膜肾小球基底膜(glomerular basement membrane、(GBM))是肾脏肾小球的基底膜层。肾小球毛细血管内皮细胞,肾小球基底膜及滤过裂隙介于足细胞之间执行肾小球的超滤作用(hyperfiltr
- 松弛素松弛素(Relaxin)是一种分子量约为6000Da的蛋白质激素 在1926年由弗雷德里克·海撒(Frederick Hisaw)发现。似松弛素胜肽家族(relaxin-like peptide family)属于胰岛素超家族,
- 西门子西门子 (英语:Siemens),又称为西门,符号为S,是物理电路学及国际单位制中,电阻、电纳和导纳,三种导抗的单位。由于西门为欧姆(英语:ohm)的倒数,因此在英语中又被称为mho。西门子在第1
- 生物素生物素(Biotin)为维生素B群之一,又称维生素H、维生素B7、辅酶R(Coenzyme R)等。 生物素在肝、肾、酵母、牛乳中含量较多,是生物体固定二氧化碳的重要因素。容易同鸡蛋白中的一种蛋
- 铯-137铯-137(英语:Caesium-137,符号为Cs-137),是铯元素的一个放射性同位素,是一种主要由核裂变产生的核裂产物。铯-137的半衰期为30.17年。 大约95%通过贝塔衰变为barium-137m1 (137m1B