首页 >
二元关系
✍ dations ◷ 2025-07-09 16:16:06 #二元关系
数学上,二元关系(英语:Binary relation,或简称关系)用于讨论两种物件的连系。诸如算术中的“大于”及“等于”、几何学中的“相似”或集合论中的“为……之元素”、“为……之子集”。集合
X
{displaystyle X}
与集合
Y
{displaystyle Y}
上的二元关系是
R
=
(
X
,
Y
,
G
(
R
)
)
{displaystyle R=(X,Y,G(R))}
,当中
G
(
R
)
{displaystyle G(R)}
,称为
R
{displaystyle R}
的图,是笛卡儿积
X
×
Y
{displaystyle Xtimes Y}
的子集。若
(
x
,
y
)
∈
G
(
R
)
{displaystyle (x,y)in G(R)}
则称
x
{displaystyle x}
与
y
{displaystyle y}
有关系
R
{displaystyle R}
,并记作
x
R
y
{displaystyle xRy}
或
R
(
x
,
y
)
{displaystyle R(x,y)}
。但经常地我们把关系与其图等价起来,即若
R
⊆
X
×
Y
{displaystyle Rsubseteq Xtimes Y}
则
R
{displaystyle R}
是一个关系。例子:有四件物件{球,糖,车,枪}及四个人{甲,乙,丙,丁}。若甲拥有球,
乙拥有糖,及丁拥有车-即无人有枪及丙一无所有-则二元关系为“……拥有……”便是其中
R
{displaystyle R}
的首项是物件的集合,次项是人的集合,而末项是由有序对(物件,主人)
组成的集合。比如有序对(球,甲)以球
R
{displaystyle R}
甲表示,
代表球为甲拥有。不同的关系可以有相同的图。以下的关系中人人皆是物主,所以与
R
{displaystyle R}
不同,但两者有相同的图。话虽如此,我们很多时候索性把
R
{displaystyle R}
定义为
G
(
R
)
{displaystyle G(R)}
而“有序对
(
x
,
y
)
∈
G
(
R
)
{displaystyle (x,y)in G(R)}
”亦即是“
(
x
,
y
)
∈
R
{displaystyle (x,y)in R}
”。二元关系可看作成二元函数,这种二元函数把输入元
x
∈
X
{displaystyle xin X}
及
y
∈
Y
{displaystyle yin Y}
视为独立变数并求真伪值(包括“有序对
(
x
,
y
)
{displaystyle (x,y)}
是或非二元关系中的一元”此一问题)。若
X
=
Y
{displaystyle X=Y}
,则称
R
{displaystyle R}
为
X
{displaystyle X}
上的关系。设
A
{displaystyle A}
是一个集合,则设
X
=
{
x
1
,
x
2
,
…
,
x
n
}
{displaystyle X={x_{1},x_{2},ldots ,x_{n}}}
及
Y
=
{
y
1
,
y
2
,
…
,
y
m
}
{displaystyle Y={y_{1},y_{2},ldots ,y_{m}}}
,
R
{displaystyle R}
是
X
{displaystyle X}
Y
{displaystyle Y}
上的关系,令则0,1矩阵称为
R
{displaystyle R}
的关系矩阵,记作
M
R
{displaystyle M_{R}}
。设
A
=
{
x
1
,
x
2
,
…
,
x
n
}
{displaystyle A={x_{1},x_{2},ldots ,x_{n}}}
,
R
{displaystyle R}
是
A
{displaystyle A}
上的关系,令图
G
=
(
V
,
E
)
{displaystyle G=(V,E)}
,其中顶点集合
V
=
A
{displaystyle V=A}
,边集合为
E
{displaystyle E}
,且对于任意的
x
i
,
x
j
∈
V
{displaystyle x_{i},x_{j}in V}
,满足
(
x
i
,
x
j
)
∈
E
{displaystyle (x_{i},x_{j})in E}
当且仅当
(
x
i
,
x
j
)
∈
R
{displaystyle (x_{i},x_{j})in R}
。则称图
G
{displaystyle G}
是关系
R
{displaystyle R}
的关系图,记作
G
R
{displaystyle G_{R}}
。关系的基本运算有以下几种:关系的性质主要有以下五种:设
R
{displaystyle R}
为集合
A
{displaystyle A}
上的关系,下面给出
R
{displaystyle R}
的五种性质成立的充要条件:设
R
{displaystyle R}
是非空集合
A
{displaystyle A}
上的关系,
R
{displaystyle R}
的自反(对称或传递)闭包是
A
{displaystyle A}
上的关系
R
′
{displaystyle R'}
,满足一般将
R
{displaystyle R}
的自反闭包记作
r
(
R
)
{displaystyle r(R)}
,对称闭包记作
s
(
R
)
{displaystyle s(R)}
,传递闭包记作
t
(
R
)
{displaystyle t(R)}
。下列三个定理给出了构造闭包的方法:对于有限集合
A
{displaystyle A}
上的关系
R
{displaystyle R}
,存在一个正整数
r
{displaystyle r}
,使得求传递闭包是图论中一个非常重要的问题,例如给定了一个城市的交通地图,可利用求传递闭包的方法获知任意两个地点之间是否有路相连通。可以直接利用关系矩阵相乘来求传递闭包,但那样做复杂度比较高;好一点的办法是在计算矩阵相乘的时候用分治法降低时间复杂度;但最好的方法是利用基于动态规划的Floyd-Warshall算法来求传递闭包。
相关
- 放线菌放线菌(Actinobacteria)是一类革兰氏阳性细菌,可栖息于水中或陆地上,虽然一开始被认定为土壤菌,但淡水中的种类可能比陆地上的更丰富,它们具有分支的纤维和孢子,依靠孢子繁殖,表面上
- 大英百科第11版《大英百科全书第十一版》(英语:Encyclopædia Britannica Eleventh Edition),或作《1911年版大英百科全书》,是《大英百科全书》最经典的一个版本,共29卷。它的出版也反映出美国
- 萨姆风萨姆风 又称西蒙风。在阿拉伯半岛和撒哈拉出现的极端干热的小规模旋风。温度常达55℃,而温度有时低于10%。萨姆风是在晴朗无云、地面急剧增热时所产生的。
- Mo4d5 5s12, 8, 18, 13, 1蒸气压第一:684.3 kJ·mol−1 第二:1560 kJ·mol−1 第三:2618 kJ·mol主条目:钼的同位素钼(Molybdenum)是一种化学元素,它的化学符号是Mo,它的原子序数
- 类型论在最广泛的层面上,类型论(英语:type theory)是关注把实体分类到叫做类型的搜集中的数学和逻辑分支。在这种意义上,它与类型的形而上学概念有关。现代类型论在部分上是响应罗素悖
- 西班牙流行性感冒1918年流感大流行(英语:1918 flu pandemic)是于1918年1月至1920年12月间爆发的全球性甲型H1N1流感疫情,此次疫情造成全世界5亿人感染,1.7千万至5千万死亡,传播范围达到太平洋群岛
- 性别重置手术性别重置手术(英语:Sex reassignment surgery,缩写:SRS),也称为性别还原手术、变性手术、性转换手术(英语:Transsexual surgery)等等,是一项外科技术,也是一种阉割手术,通过这种手术程序
- 肟.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
- 新古典主义新古典主义(英语:Neoclassicism),是一种新的复古运动。兴起于18世纪的罗马,并迅速在西方世界扩展的艺术运动,影响了装饰艺术、建筑、绘画、文学、戏剧和音乐等众多领域。新古典主
- 图卢兹市政厅图卢兹市政厅(Capitole de Toulouse)是法国南部城市图卢兹的市政厅。图卢兹市政厅始建于1190年,为这个财富和影响力日益增强的省提供一个政府所在地。"Capitole"得名于罗马卡比