满射

✍ dations ◷ 2025-06-09 04:08:31 #函数,集合论基本概念,数学关系,各类函数

满射或盖射(英语:surjection、onto),或称满射函数或映成函数,一个函数 f : X Y {\displaystyle f:X\rightarrow Y} 为满射,则对于任意的陪域 Y {\displaystyle Y} 中的元素 y {\displaystyle y} ,在函数的定义域 X {\displaystyle X} 中存在一点 x {\displaystyle x} 使得 f ( x ) = y {\displaystyle f(x)=y} 。换句话说, f {\displaystyle f} 是满射时,它的值域 f ( X ) {\displaystyle f(X)} 与陪域 Y {\displaystyle Y} 相等,或者,等价地,如果每一个陪域中的元素 y Y {\displaystyle y\in Y} 其原像 f 1 ( y ) X {\displaystyle f^{-1}(y)\subseteq X} 不等于空集合。

函数 g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } ,定义为 g ( x ) = x 2 {\displaystyle g(x)=x^{2}} ,不是一个满射,因为,(举例)不存在一个实数满足 x 2 = 1 {\displaystyle x^{2}=-1}

但是,如果把 g {\displaystyle g} 的陪域限制到只有非负实数,则函数 g {\displaystyle g} 为满射。这是因为,给定一个任意的非负实数 y {\displaystyle y} ,我们能对 y = x 2 {\displaystyle y=x^{2}} 求解,得到 x = ± y {\displaystyle x=\pm {\sqrt {y}}}


Bijection.svg
双射(单射与满射)

Injection.svg
单射但非满射

Surjection.svg
满射但非单射

Total function.svg
非满射非单射

相关

  • 蒙娜·丽莎《蒙娜丽莎》(意大利语:La Gioconda;法语:La Joconde;英语:Mona Lisa)是文艺复兴时期画家列奥纳多·达芬奇所绘的肖像画,是其代表作。它可以说是世界上最著名的油画作品之一,很少有其
  • 李文斯敦戴维·利文斯通(英语:David Livingstone;1813年3月19日-1873年5月1日),英国探险家、传教士,维多利亚瀑布和马拉维湖的发现者,非洲探险的最伟大人物之一。利文斯通一生致力向非洲土著
  • 本·伯南克本·沙洛姆·伯南克(英语:Ben Shalom Bernanke,/bərˈnæŋki/ bər-NANG-kee,1953年12月13日-),美国犹太裔经济学家,曾任美国联邦储备委员会主席。2015年4月,伯南克取得全球最大固
  • 毛细血管扩张性运动失调共济失调微血管扩张症候群是一种小脑运动失调疾病,常于3-6岁发病,并会有免疫不全、微血管扩张,以及容易发生癌症,对辐射的抗性亦有所下降。其发生率为1/40000至100000。遗传方面
  • 塞巴斯蒂安·维特尔241( 240次起步)塞巴斯蒂安·维特尔(德语:Sebastian Vettel,1987年7月3日-),是一位德国一级方程式赛车车手,目前效力于法拉利车队。他是四届的一级方程式赛车世界冠军,在2010年、2011
  • 广西2019冠状病毒病广西壮族自治区疫情,介绍2019冠状病毒病疫情中,在中华人民共和国广西壮族自治区发生的情况。以下数据皆由广西壮族自治区卫生健康委员会通报。2020年1月21日早
  • 加拉帕戈斯坐标:0°40′S 90°33′W / 0.667°S 90.550°W / -0.667; -90.550科隆群岛,又称加拉帕戈斯群岛(西班牙语:Islas Galápagos,官方名称Archipiélago de Colón),位于太平洋东部,接近
  • 生殖泌尿系统泌尿生殖系统(urogenital system)或生殖泌尿系统(genitourinary system)是生殖器官和泌尿系统所在的生物系统。这两个系统并在一起的原因是因为它们彼此相邻,非常接近。此外,这两
  • 西奈山伊坎医学院西奈山伊坎医学院(Icahn School of Medicine at Mount Sinai)是纽约市的一所私立医学院,是1963年由西奈山医院建立起来的。该院建立之时附属于纽约城市大学;1999年改为附属于纽
  • 隆头鱼属隆头鱼属(学名:)是隆头鱼目隆头鱼科的一个属,其下生物分布于大西洋东部至地中海、黑海海域。本属属于隆头鱼亚科,其下共有四种: