开尔文船波

✍ dations ◷ 2025-02-24 17:21:36 #特殊函数,流体力学

开尔文船波(Kelvin Wake, Kelvin ship wave)。鸭子或船只在深水湖面经过时,在后面会激起一道V形的波。开尔文男爵最先对船波进行数学研究,因此称为开尔文船波。船波动形状和福禄数 F r {\displaystyle Fr} 有密切关系。

F r = V g l {\displaystyle Fr={\frac {V}{\sqrt {gl}}}}

其中g为重力常数,V是船速,l是船的长度。

令船的长度 l = k V 2 g {\displaystyle l=k*{\frac {V^{2}}{g}}} F r = 1 k {\displaystyle Fr={\frac {1}{\sqrt {k}}}} .

对于长度大而速度低的轮船,Fr数小,开尔文船波主要是长波,其波前与速度矢量的夹角比较小。

而小快艇,长度小,速度高,Fr 数大,开尔文船波则以短波长的水波为主,而波前则与速度矢量成较大的夹角。

开尔文船波动研究,对于船舶的设计有重要意义,因为船舶的马力,有一部分消耗在激起船波。利用Fr数与速度成正比,与长度的平方根成反比的规律,可以利用小的模型,缩小船长 M 2 {\displaystyle M^{2}} 倍,同时缩小速度M倍,可以在实验室中模拟海上舟。

当船只以速度V驶过深水湖面,波形的幅度在相对于船只为静止的极坐标( ρ , ϕ {\displaystyle \rho ,\phi } 中在船只的速度矢量方向, ϕ = 0 {\displaystyle \phi =0} ),由下列公式表示

K ( ϕ , ρ ) = π / 2 π / 2 c o s ( ρ c o s ( θ + ϕ ) c o s 2 θ d θ {\displaystyle K(\phi ,\rho )=\int _{-\pi /2}^{\pi /2}cos(\rho {\frac {cos(\theta +\phi )}{cos^{2}\theta }}d\theta }

其中 ρ = g r / V 2 {\displaystyle \rho =gr/V^{2}}

1 ρ = V 2 g r {\displaystyle {\frac {1}{\rho }}={\frac {V^{2}}{gr}}} 是福禄数的平方 F r 2 {\displaystyle Fr^{2}}

g {\displaystyle g} 为重力常数 l {\displaystyle l} 为船的长度。

上列K函数是下列多鞍点积分的正数部分:

K ( ϕ , ρ ) = R e ( exp ( i ρ f ( θ , ρ ) d θ ) {\displaystyle K(\phi ,\rho )=Re(\int _{-\infty }^{\infty }\exp(i*\rho *f(\theta ,\rho )d\theta )} 其中,多鞍点积分的核函数为

f ( θ , ϕ ) = c o s ( θ + ϕ ) c o s 2 θ {\displaystyle f(\theta ,\phi )=-{\frac {cos(\theta +\phi )}{cos^{2}\theta }}}

此核函数是一个多鞍点函数,振荡剧烈如图

求其极点,

d f ( θ , ϕ ) d θ = s i n ( θ + ϕ ) c o s ( θ ) 2 2 c o s ( θ + ϕ ) s i n ( θ ) c o s ( θ ) 3 = 0 {\displaystyle {\frac {df(\theta ,\phi )}{d\theta }}={\frac {sin(\theta +\phi )}{cos(\theta )^{2}}}-{\frac {2*cos(\theta +\phi )*sin(\theta )}{cos(\theta )^{3}}}=0}

解之,得

θ 1 = a r c t a n ( ( 1 / 4 ) ( 1 + ( 1 8 t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) = a r c t a n ( ( 1 / 4 ) ( 1 + ( 1 8 t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) {\displaystyle \theta _{1}=arctan({\frac {(1/4)*(1+{\sqrt {(1-8*tan(\phi )^{2}))}}}{tan(\phi )}})=-arctan({\frac {(1/4)*(-1+{\sqrt {(}}1-8*tan(\phi )^{2}))}{tan(\phi )}})}

由此

ϕ 1 = 19.47 {\displaystyle \phi _{1}=19.47} 度,

ϕ 2 = 19.47 {\displaystyle \phi _{2}=-19.47}

这就是凯尔文船波的V型波包线的夹角,最早由凯尔文男爵发现,而且角度与船速无关.至于波纹本身则与船速矢量的夹角为

θ = π 19.47 = 35.3 {\displaystyle \theta =\pi -19.47=35.3} °

开尔文船波积分 K ( ϕ , ρ ) {\displaystyle K(\phi ,\rho )} 必须通过数值积分计算。开尔文男爵根据被积分函数在积分区间内剧烈震荡的特点,提出了驻相法(Method of Stationary Phase)。

原理:当被积分函数剧烈震荡时,除了在极点外,震荡的被积分函数正负相抵消,因此可以将此被积分函数在极点的值作为整个积分的近似,驻相法乃是拉普拉斯方法的推广。

被积分函数 f ( θ , ϕ ) = c o s ( θ + ϕ ) c o s 2 θ {\displaystyle f(\theta ,\phi )=-{\frac {cos(\theta +\phi )}{cos^{2}\theta }}} 的两个极点是:

θ p = a r c t a n ( ( 1 / 4 ) ( 1 + ( 1 8 t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) {\displaystyle \theta _{p}=arctan({\frac {(1/4)*(1+{\sqrt {(1-8*tan(\phi )^{2}))}}}{tan(\phi )}})}


θ m = a r c t a n ( ( 1 / 4 ) ( 1 + ( 1 8 t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) {\displaystyle \theta _{m}=-arctan({\frac {(1/4)*(-1+{\sqrt {(}}1-8*tan(\phi )^{2}))}{tan(\phi )}})}

f m = f ( θ m , ϕ ) = s i n ( ( 1 / 2 ) ϕ ( 1 / 2 ) a r c s i n ( 3 s i n ( ϕ ) ) ) s i n ( ( 1 / 2 ) ϕ + ( 1 / 2 ) a r c s i n ( 3 s i n ( ϕ ) ) ) {\displaystyle f_{m}=f(\theta _{m},\phi )={\frac {sin((1/2)*\phi -(1/2)*arcsin(3*sin(\phi )))}{sin((1/2)*\phi +(1/2)*arcsin(3*sin(\phi )))}}}

f p = f ( θ p , ϕ ) = c o s ( ( 1 / 2 ) ϕ + ( 1 / 2 ) a r c s i n ( 3 s i n ( ϕ ) ) ) c o s ( ( 1 / 2 ) ϕ + ( 1 / 2 ) a r c s i n ( 3 s i n ( ϕ ) ) ) {\displaystyle f_{p}=f(\theta _{p},\phi )={\frac {cos((1/2)*\phi +(1/2)*arcsin(3*sin(\phi )))}{cos(-(1/2)*\phi +(1/2)*arcsin(3*sin(\phi )))}}}

f b a r := 1 / 2 ( f p + f m ) {\displaystyle fbar:=1/2*(f_{p}+f_{m})}

D 2 F = d 2 F ( θ , ϕ ) d θ 2 {\displaystyle D2F={\frac {d^{2}F(\theta ,\phi )}{d\theta ^{2}}}}

D 2 F p = D 2 F ( θ p , ϕ ) {\displaystyle D2F_{p}=D2F(\theta _{p},\phi )}

D 2 F m = D 2 F ( θ m , ϕ ) {\displaystyle D2F_{m}=D2F(\theta _{m},\phi )}

Δ := ( 3 / 4 ( f m f p ) ) ( 2 / 3 ) {\displaystyle \Delta :=(3/4*(f_{m}-f_{p}))^{(}2/3)}

u = Δ 1 / 2 2 ( 1 D 2 F p + 1 D 2 F m ) {\displaystyle u={\sqrt {\frac {\Delta ^{1/2}}{2}}}*({\frac {1}{\sqrt {D2F_{p}}}}+{\frac {1}{\sqrt {-D2F_{m}}}})}

v = 2 Δ 1 / 2 ( 1 D 2 F p 1 D 2 F m ) {\displaystyle v={\sqrt {\frac {2}{\Delta ^{1/2}}}}*({\frac {1}{\sqrt {D2F_{p}}}}-{\frac {1}{\sqrt {-D2F_{m}}}})}

K ( ϕ , ρ ) 2 π ( u c o s ( ρ f b a r ) A i r y A i ( ρ ( 2 / 3 ) Δ ) / ρ ( 1 / 3 ) + v s i n ( ρ f b a r ) A i r y A i ( 1 , ρ ( 2 / 3 ) Δ ) / ρ ( 2 / 3 ) ) {\displaystyle K(\phi ,\rho )\approx 2*\pi *(u*cos(\rho *fbar)*AiryAi(-\rho ^{(}2/3)*\Delta )/\rho ^{(}1/3)+v*sin(\rho *fbar)*AiryAi(1,-\rho ^{(}2/3)*\Delta )/\rho ^{(}2/3))}


开尔文船波的波峰,由下列两个参数方程式描述

x := X s i n ( β ) ( 1 ( 1 / 2 ) s i n ( β ) 2 ) {\displaystyle x:=X*sin(\beta )*(1-(1/2)*sin(\beta )^{2})}

y := X s i n ( β ) 2 c o s ( β ) / ( 2 M ) {\displaystyle y:=X*sin(\beta )^{2}*cos(\beta )/(2*M)}

相关

  • 木馏油木馏油(亦称木烟油,英文:Wood-tar creosote ;或称木杂酚油,英文:wood creosote),又称医用木馏油,是一种通过加热裂解木材的成分而制得的以酚类化合物为主要成分的混合物,为杂酚油的一
  • 梯队系统2001年–2007年–与英国政府通信总部合作项目非持续进行项目梯队系统(Echelon)是一个以美国为中心的情报收集分析网络的俗称。参与国家是英美防卫协定的五个签署国,英国、美国
  • 张水华张水华(1916年-1995年),原名张毓蕃,艺名水华,男,湖北钟祥人,生于江苏南京,中国电影艺术家,曾任东北电影制片厂导演、北京电影制片厂导演,第五、六、七届全国政协委员。
  • 运动功能减退症运动功能减退症是指一种身体运动能力下降的病症。这种病往往与其他疾病相关连,例如:基底节疾病(如帕金森氏症)、心理健康失调和因疾病而长期不作任何活动所致。运动功能减退症包
  • 景云里景云里是上海市虹口区四川北路街道的一条石库门里弄,即横浜路35弄,在多伦路背后,建于1925年。包括3排坐北朝南的砖木结构石库门3层楼住宅32幢,建筑总面积2400平方米。在1920年代
  • 泰安服务区泰安服务区是台湾国道一号上位于台中市后里区的服务区,泰安服务区分为南下、北上两站,里程为中山高速公路158公里,是中山高速公路自基隆起的第三个服务区,北站于1978年启用,面积
  • 英语修订版圣经英语修订版圣经(英文:English Revised Version),又称修订版圣经,是英语世界的人在19世纪后期针对1611年的钦定版圣经所作的英国修订版本。新约出版于1881年,旧约于1885年出版,伪经
  • 秋田书店秋田书店(日语:秋田書店、あきたしょてん;英语:Akita Publishing Co., Ltd.)是日本的出版社之一,创立于1948年8月10日。以出版漫画为支柱。
  • BTS's American Hustle Life《BTS's American Hustle Life》(韩语:방탄소년단의 아메리칸 허슬 라이프)是韩国Big Hit娱乐公司旗下男子团体防弹少年团的第二个电视真人实境秀综艺节目,是Mnet突破以往做出的
  • FastlyFastly,美国云端运算服务商,其边缘运算平台(Edge Cloud Platform)提供内容传递网络、网络安全服务、负载均衡及影片串流等服务。Fastly公司现于美国加州旧金山设总部,并于丹佛、