开尔文船波

✍ dations ◷ 2025-09-13 01:10:22 #特殊函数,流体力学

开尔文船波(Kelvin Wake, Kelvin ship wave)。鸭子或船只在深水湖面经过时,在后面会激起一道V形的波。开尔文男爵最先对船波进行数学研究,因此称为开尔文船波。船波动形状和福禄数 F r {\displaystyle Fr} 有密切关系。

F r = V g l {\displaystyle Fr={\frac {V}{\sqrt {gl}}}}

其中g为重力常数,V是船速,l是船的长度。

令船的长度 l = k V 2 g {\displaystyle l=k*{\frac {V^{2}}{g}}} F r = 1 k {\displaystyle Fr={\frac {1}{\sqrt {k}}}} .

对于长度大而速度低的轮船,Fr数小,开尔文船波主要是长波,其波前与速度矢量的夹角比较小。

而小快艇,长度小,速度高,Fr 数大,开尔文船波则以短波长的水波为主,而波前则与速度矢量成较大的夹角。

开尔文船波动研究,对于船舶的设计有重要意义,因为船舶的马力,有一部分消耗在激起船波。利用Fr数与速度成正比,与长度的平方根成反比的规律,可以利用小的模型,缩小船长 M 2 {\displaystyle M^{2}} 倍,同时缩小速度M倍,可以在实验室中模拟海上舟。

当船只以速度V驶过深水湖面,波形的幅度在相对于船只为静止的极坐标( ρ , ϕ {\displaystyle \rho ,\phi } 中在船只的速度矢量方向, ϕ = 0 {\displaystyle \phi =0} ),由下列公式表示

K ( ϕ , ρ ) = π / 2 π / 2 c o s ( ρ c o s ( θ + ϕ ) c o s 2 θ d θ {\displaystyle K(\phi ,\rho )=\int _{-\pi /2}^{\pi /2}cos(\rho {\frac {cos(\theta +\phi )}{cos^{2}\theta }}d\theta }

其中 ρ = g r / V 2 {\displaystyle \rho =gr/V^{2}}

1 ρ = V 2 g r {\displaystyle {\frac {1}{\rho }}={\frac {V^{2}}{gr}}} 是福禄数的平方 F r 2 {\displaystyle Fr^{2}}

g {\displaystyle g} 为重力常数 l {\displaystyle l} 为船的长度。

上列K函数是下列多鞍点积分的正数部分:

K ( ϕ , ρ ) = R e ( exp ( i ρ f ( θ , ρ ) d θ ) {\displaystyle K(\phi ,\rho )=Re(\int _{-\infty }^{\infty }\exp(i*\rho *f(\theta ,\rho )d\theta )} 其中,多鞍点积分的核函数为

f ( θ , ϕ ) = c o s ( θ + ϕ ) c o s 2 θ {\displaystyle f(\theta ,\phi )=-{\frac {cos(\theta +\phi )}{cos^{2}\theta }}}

此核函数是一个多鞍点函数,振荡剧烈如图

求其极点,

d f ( θ , ϕ ) d θ = s i n ( θ + ϕ ) c o s ( θ ) 2 2 c o s ( θ + ϕ ) s i n ( θ ) c o s ( θ ) 3 = 0 {\displaystyle {\frac {df(\theta ,\phi )}{d\theta }}={\frac {sin(\theta +\phi )}{cos(\theta )^{2}}}-{\frac {2*cos(\theta +\phi )*sin(\theta )}{cos(\theta )^{3}}}=0}

解之,得

θ 1 = a r c t a n ( ( 1 / 4 ) ( 1 + ( 1 8 t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) = a r c t a n ( ( 1 / 4 ) ( 1 + ( 1 8 t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) {\displaystyle \theta _{1}=arctan({\frac {(1/4)*(1+{\sqrt {(1-8*tan(\phi )^{2}))}}}{tan(\phi )}})=-arctan({\frac {(1/4)*(-1+{\sqrt {(}}1-8*tan(\phi )^{2}))}{tan(\phi )}})}

由此

ϕ 1 = 19.47 {\displaystyle \phi _{1}=19.47} 度,

ϕ 2 = 19.47 {\displaystyle \phi _{2}=-19.47}

这就是凯尔文船波的V型波包线的夹角,最早由凯尔文男爵发现,而且角度与船速无关.至于波纹本身则与船速矢量的夹角为

θ = π 19.47 = 35.3 {\displaystyle \theta =\pi -19.47=35.3} °

开尔文船波积分 K ( ϕ , ρ ) {\displaystyle K(\phi ,\rho )} 必须通过数值积分计算。开尔文男爵根据被积分函数在积分区间内剧烈震荡的特点,提出了驻相法(Method of Stationary Phase)。

原理:当被积分函数剧烈震荡时,除了在极点外,震荡的被积分函数正负相抵消,因此可以将此被积分函数在极点的值作为整个积分的近似,驻相法乃是拉普拉斯方法的推广。

被积分函数 f ( θ , ϕ ) = c o s ( θ + ϕ ) c o s 2 θ {\displaystyle f(\theta ,\phi )=-{\frac {cos(\theta +\phi )}{cos^{2}\theta }}} 的两个极点是:

θ p = a r c t a n ( ( 1 / 4 ) ( 1 + ( 1 8 t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) {\displaystyle \theta _{p}=arctan({\frac {(1/4)*(1+{\sqrt {(1-8*tan(\phi )^{2}))}}}{tan(\phi )}})}


θ m = a r c t a n ( ( 1 / 4 ) ( 1 + ( 1 8 t a n ( ϕ ) 2 ) ) t a n ( ϕ ) ) {\displaystyle \theta _{m}=-arctan({\frac {(1/4)*(-1+{\sqrt {(}}1-8*tan(\phi )^{2}))}{tan(\phi )}})}

f m = f ( θ m , ϕ ) = s i n ( ( 1 / 2 ) ϕ ( 1 / 2 ) a r c s i n ( 3 s i n ( ϕ ) ) ) s i n ( ( 1 / 2 ) ϕ + ( 1 / 2 ) a r c s i n ( 3 s i n ( ϕ ) ) ) {\displaystyle f_{m}=f(\theta _{m},\phi )={\frac {sin((1/2)*\phi -(1/2)*arcsin(3*sin(\phi )))}{sin((1/2)*\phi +(1/2)*arcsin(3*sin(\phi )))}}}

f p = f ( θ p , ϕ ) = c o s ( ( 1 / 2 ) ϕ + ( 1 / 2 ) a r c s i n ( 3 s i n ( ϕ ) ) ) c o s ( ( 1 / 2 ) ϕ + ( 1 / 2 ) a r c s i n ( 3 s i n ( ϕ ) ) ) {\displaystyle f_{p}=f(\theta _{p},\phi )={\frac {cos((1/2)*\phi +(1/2)*arcsin(3*sin(\phi )))}{cos(-(1/2)*\phi +(1/2)*arcsin(3*sin(\phi )))}}}

f b a r := 1 / 2 ( f p + f m ) {\displaystyle fbar:=1/2*(f_{p}+f_{m})}

D 2 F = d 2 F ( θ , ϕ ) d θ 2 {\displaystyle D2F={\frac {d^{2}F(\theta ,\phi )}{d\theta ^{2}}}}

D 2 F p = D 2 F ( θ p , ϕ ) {\displaystyle D2F_{p}=D2F(\theta _{p},\phi )}

D 2 F m = D 2 F ( θ m , ϕ ) {\displaystyle D2F_{m}=D2F(\theta _{m},\phi )}

Δ := ( 3 / 4 ( f m f p ) ) ( 2 / 3 ) {\displaystyle \Delta :=(3/4*(f_{m}-f_{p}))^{(}2/3)}

u = Δ 1 / 2 2 ( 1 D 2 F p + 1 D 2 F m ) {\displaystyle u={\sqrt {\frac {\Delta ^{1/2}}{2}}}*({\frac {1}{\sqrt {D2F_{p}}}}+{\frac {1}{\sqrt {-D2F_{m}}}})}

v = 2 Δ 1 / 2 ( 1 D 2 F p 1 D 2 F m ) {\displaystyle v={\sqrt {\frac {2}{\Delta ^{1/2}}}}*({\frac {1}{\sqrt {D2F_{p}}}}-{\frac {1}{\sqrt {-D2F_{m}}}})}

K ( ϕ , ρ ) 2 π ( u c o s ( ρ f b a r ) A i r y A i ( ρ ( 2 / 3 ) Δ ) / ρ ( 1 / 3 ) + v s i n ( ρ f b a r ) A i r y A i ( 1 , ρ ( 2 / 3 ) Δ ) / ρ ( 2 / 3 ) ) {\displaystyle K(\phi ,\rho )\approx 2*\pi *(u*cos(\rho *fbar)*AiryAi(-\rho ^{(}2/3)*\Delta )/\rho ^{(}1/3)+v*sin(\rho *fbar)*AiryAi(1,-\rho ^{(}2/3)*\Delta )/\rho ^{(}2/3))}


开尔文船波的波峰,由下列两个参数方程式描述

x := X s i n ( β ) ( 1 ( 1 / 2 ) s i n ( β ) 2 ) {\displaystyle x:=X*sin(\beta )*(1-(1/2)*sin(\beta )^{2})}

y := X s i n ( β ) 2 c o s ( β ) / ( 2 M ) {\displaystyle y:=X*sin(\beta )^{2}*cos(\beta )/(2*M)}

相关

  • 叁键三键(英语:Triple bond),是有机化学中原子与原子之间被3对价电子连结的共价键的称号。在有机化学中,所有的炔烃化合物都具有三键,同时,也有许多其他例子
  • 太守又称郡守,中国、朝鲜半岛与越南古代一种地方职官,一般是掌理地方郡一级的行政区之地方行政官。战国时就开始设置郡守。当时,列国在边境冲突地区设立郡的建制,作为综合行使军
  • 大画幅相机大画幅相机也称为座机、大型座机、单轨座机、双轨座机、移轴相机、外拍机等。大画幅相机的显著特点是它们使用的感光介质“胶片”是页片形式的,目前主流的页片尺寸有:8x10英寸
  • 海上护卫总司令部海上护卫总司令部(日语:海上護衛総司令部/かいじょうごえいそうしれいぶ Kaijō Goē Sōshirēbu ?)是旧日本海军在太平洋战争后期设立、专司通商护卫的机构。海上护卫总司令
  • 比尔·莫伦茨比尔·莫伦茨(英语:Bill Melendez,出生名为José Cuauhtémoc Meléndez,1916年11月5日-2008年10月2日),墨西哥裔美国人,是一名著名动画师、电影监制及配音员。莫伦茨出生于墨西哥西
  • 海道贤仁海道贤治(日语:カイドウケンジとは),日本电子游戏设计师,曾就职于索尼电脑娱乐,任第一方开发人员。海道贤仁早年就职于TAITO株式会社,并首次作为项目领导人主导开发了一系列游戏,如B
  • 任见任见,中国作家,另名后山,1980年代开始写作,《文艺报》等报刊曾对其创作思想进行讨论,《青年作家》、《河南日报》等曾开辟专栏对其创作倾向进行“争鸣”,1986年读完研究生(中外文化
  • 曼哈顿音乐学院曼哈顿音乐学院是位于纽约市西北部的一家音乐学校。该学校颁授学士、硕士和博士学位,有古典及爵士表演和作曲的专业。现有275名教员和来自30个国家的800名学生。学院还有预科
  • Universum Film GmbH“Universum Film GmbH”,简称UFG。德国一家品牌授权公司,是娱乐市场的影视、动画、电影、戏剧、纪录片的代理发行商。总部设立在德国巴伐利亚州慕尼黑。Universum Film于1977
  • 子玉子玉可以指: