勾股数,又名商高数或毕氏数(Pythagorean triple),是由三个正整数组成的数组;能符合勾股定理(毕式定理)“”之中,的正整数解。而且,基于勾股定理的逆定理,任何边长是勾股数组的三角形都是直角三角形。
如果是勾股数,它们的正整数倍数,也是勾股数,即也是勾股数。若果三者互质(它们的最大公因数是 1),它们就称为素勾股数。
以下的方法可用来找出勾股数。设、和均是正整数,
若和是互质,而且和为一奇一偶,计算出来的就是素勾股数。(若和都是奇数,就会全是偶数,不符合互质。)
所有素勾股数可用上述列式当中找出,这亦可推论到数学上存在无穷多的素勾股数。
以下是小于 100 的素勾股数:
有些勾股数组可以有同一个最小的勾股数。第一个例子是 20 ,它在以下两组勾股数之中出现:与。
其中最先例子是5,它在以下两组勾股数之中出现及。
在 15,386 组素勾股数的 1229779565176982820 ,它的最小与最大的勾股数组是:
与
试考虑它的素因数分解
它素因数的个数涉及不少素勾股数。当然,数学上存在比它大的素勾股数。
若需要一组最小数为奇数的勾股数,可任意选取一个 3 或以上的奇数,将该数自乘为平方数,除以 2,答案加减 0.5 可得到两个新的数字,这两个数字连同一开始选取的奇数,三者必定形成一组勾股数。但却不一定是以这个选取数字为起首勾股数的唯一可能,例如并非是以 27 为起首的唯一勾股数,因为存在另一个勾股数是,同样也以 27 为首。
对于任何大于1的整数,、与,三个数必为勾股数,例如:代入为2,则为5,为3,为4,为一组勾股数。
费马最后定理指出,若,而是大于 2 的整数,即没有正整数解。