辐射平衡是离开物体的总热辐射等于进入它的总热辐射的条件。它是热力学平衡的几个要求之一,但它可以在没有热力学平衡的情况下发生。辐射平衡有多种类型,它本身是一种动态平衡。
平衡,一般来说,是一种相反的力量平衡的状态,因此系统不会随时间变化。辐射平衡是热平衡的特殊情况,因为热交换是通过辐射传热完成的。有以下几种类型的辐射平衡。
皮埃尔·普雷沃斯特在 1791 年做出了一项重要的早期贡献。 普雷沃斯特认为现在所谓的光子气体或电磁辐射是一种他称之为“自由热”的流体。普雷沃斯特提出,自由辐射热是一种非常稀有的流体,其射线就像光线一样,可以相互穿过,而不会对它们的通过造成可察觉的干扰。普雷沃斯特的交换理论指出,每个物体都向其他物体辐射并接收来自其他物体的辐射。无论是否存在其他物体,都会发射来自每个物体的辐射。
普雷沃斯特在 1791 年提供了以下定义:
自由热的是这种流体在空间的一部分中的状态,它接收的热量与释放的热量一样多。
自由热的是这种流体在空间的两个部分中的状态,它们彼此接收等量的热量,并且处于绝对平衡状态,或者经历完全相同的变化。
普雷沃斯特接着写道:“空间的几个部分在相同温度下的热量,并且彼此相邻,同时处于两种平衡状态。”
继普朗克 (1914) 之后, 辐射场通常用特定的辐射强度来描述,它是空间区域中每个几何点在某一时刻的函数。 这与普雷沃斯特的定义模式略有不同,后者是针对空间区域的。它在概念上也与普雷沃斯特的定义略有不同:普雷沃斯特考虑束缚热和自由热,而今天我们考虑分子动能和其他动态能量中的热,即物质中的热和热光子气体。古迪和杨 (1989) 给出了详细的定义。 他们想到了物质中热辐射和热量之间的相互转换。从他们得出的特定辐射强度、或行星的。 这与测量的全球平均地表气温有关(但不完全相同), 还包括大气的存在。
在地球内部(例如,来自化学或核源)的能量供应小到可以忽略不计的情况下,计算辐射平衡温度;这个假设对地球来说是合理的,但是对于计算木星的温度来说是失败的,因为木星的内部能源大于入射的太阳辐射, ,因此实际温度高于理论辐射平衡。
恒星从核源提供自己的能量,因此温度平衡不能仅根据入射能量来定义。
Cox 和 Giuli (1968/1984) 定义了一颗恒星的“辐射平衡”,作为一个整体,并不仅仅关注它的大气层,当能量从核反应的热传递率加上粘度到微观恒星物质粒子的运动正好通过电磁辐射从恒星到太空的能量转移来平衡。请注意,这种辐射平衡与以前的用法略有不同。他们指出,向太空辐射能量的恒星不可能处于温度分布的稳定状态,除非有能量供应,在这种情况下,是来自恒星内部核反应的能量,以支持向太空的辐射。同样,用于上述逐点辐射平衡定义的条件不能在整个正在辐射的恒星中保持:在内部,恒星处于温度分布的稳定状态,而不是内部热力学平衡。 Cox 和 Giuli 的定义允许他们同时说恒星处于温度分布的稳定状态并且处于“辐射平衡”;他们假设所有到太空的辐射能量都来自恒星内部。
当一个区域中有足够的物质使分子碰撞比光子的产生或湮灭更频繁地发生时,对于辐射来说,就是局部热力学平衡。在这种情况下,基尔霍夫的辐射吸收率和发射率相等定律成立。
处于辐射交换平衡状态的两个物体,各自处于各自的局部热力学平衡状态,温度相同,它们的辐射交换符合斯托克斯-亥姆霍兹互易原理。