四维凸正多胞体

✍ dations ◷ 2025-04-03 16:50:48 #多胞体

在数学中,四维凸正多胞体(英语:convex regular polychoron)是指一类既是凸的又是正的的四维多胞体(英语:4-polytope)(4-多胞形)。它们是正多面体(三维)和正多边形(二维)的四维类比。它们最先在19世纪被数学家路德维希·施莱夫利所发现,其中五个与五个柏拉图立体一一对应,另外一个(正二十四胞体)没有好的三维类比。

每个四维凸正多胞体必须有同种的同样大小的凸正多面体胞面面相接构成,并且每个顶点周围必须有相同数量的胞。

下面的表格描述了六个四维凸正多胞体的基本特性,表格的最后一列给出了它们所属的考克斯特群,形象化描述了它们在一系列镜面反射中的抽象群;及这个群的阶。

这6个四维凸正多胞体都是表面与三维球面(S3)同胚的单连通多胞体,所以它们的欧拉示性数都为0,因此我们有以下欧拉公式的四维类比:

其中 V {\displaystyle V} 代表零维顶点数, E {\displaystyle E} 代表一维棱数, F {\displaystyle F} 代表二维面数, C {\displaystyle C} 代表三维胞数。

以下的表格展示了6个四维凸正多胞体的多种二维投影(更多图像可以在各自的页面里找到)。表头给出了多胞体的施莱夫利符号和考克斯特符号(英语:Coxeter-Dynkin digram)。

相关

  • Australian Broadcasting Corporation澳大利亚广播公司(英语:Australian Broadcasting Corporation,ABC)是澳大利亚的国家公共广播机构。它由政府出资,向澳大利亚和全世界提供电台、电视、互联网服务,其中澳大利亚广播
  • 民法大全《民法大全》(Corpus Juris(亦作Iuris) Civilis),又称《查士丁尼法典》或《国法大全》,是东罗马帝国皇帝查士丁尼一世下令编纂的一部汇编式法典,完成于公元529至565年。严格来说,《
  • 神经肌肉接点神经肌肉接点又称神经肌肉接触面。神经纤维与肌肉细胞之间的化学联络点。与神经元之间的突触同功。神经纤维分为许多末梢分支,每个分支嵌入肌细胞膜上称为终板的凹陷中。终板
  • 赖氨酸赖氨酸(英语:Lysine,简称为Lys或者K)是一种α-氨基酸。它的化学式表示为:HO2CCH(NH2)(CH2)4NH2。赖氨酸是一种人体必需的氨基酸。赖氨酸的遗传密码是AAA和AAG。赖氨酸与精氨酸,组
  • 末日审判伊斯兰教的末世论和伊斯兰教六大信仰有关。伊斯兰教和其他的亚伯拉罕诸教一样,都教导死后肉体复活、神创世的计划以及人类灵魂不灭等教义;义人将获得乐园(天堂)的欢乐,而恶人将在
  • 大韩民国宪法外交 · 南北统一 · 阳光政策 · 行政区划 · 人权(朝鲜语:대한민국의 인권)政治主题《大韩民国宪法》(朝鲜语:대한민국 헌법/大韓民國憲法 Daehanminguk Heonbeop)(英文:Con
  • 耳闭耳闭是指以耳内闭塞,胀闷堵塞感,听力下降为特征的耳病。隐袭性、渐进性耳聋为本病主要症状。相当于西医的慢性卡他性中耳炎。
  • 泛甲壳动物泛甲壳动物(学名:Pancrustacea)是甲壳类及六足亚门的总称。这个分类与缺角类有矛盾,因缺角类只包含多足纲及六足亚门,并认为甲壳类是较为疏远的。截至2010年,泛甲壳动物已被广泛接
  • 太守太守又称郡守,中国、朝鲜半岛与越南古代一种地方职官,一般是掌理地方郡一级的行政区之地方行政官。战国时就开始设置郡守。当时,列国在边境冲突地区设立郡的建制,作为综合行使军
  • 武汉市人民政府1999年规定:印章直径4.5厘米,中央刊国徽,由湖北省人民政府制发。 武汉市市标 位于沿江大道的武汉市人民政府 中国共产党武汉市委员会 武汉市人民代表大会 武汉市人民代表大会