主曲率

✍ dations ◷ 2025-10-24 19:11:45 #曲率,曲面的微分几何,曲面

在微分几何中,在曲面给定点的两个主曲率(principal curvatures)衡量了在给定点一个曲面在这一点的不同方向怎样不同弯曲的程度。

在曲面上取一点E,曲面在E点的法线为z轴,过z轴可以有无限多个剖切平面,每个剖切平面与曲面相交,其交线为一条平面曲线,每条平面曲线在E点有一个曲率半径。不同的剖切平面上的平面曲线在E点的曲率半径一般是不相等的。这些曲率半径中,有一个最大和最小的曲率半径,称之为主曲率半径,记作 12,这两个曲率半径所在的方向,数学上可以证明是相互垂直的。

这里一条曲线的曲率由定义是密切圆半径的倒数。当曲线转向与平面给定法向量相同方向时,曲率取正值,否则取负值。当曲率取最大与最小值的两个法平面方向总是垂直的,这是欧拉在1760年的一个结论,称之为主方向。从现代的观点来看,这个定理来自谱定理因为它们可以作为对应于高斯映射微分的一个对称矩阵的本征向量。对主曲率和主方向的系统研究由达布使用达布标架完成。

两个主曲率的乘积 是高斯曲率 ,而平均值 是平均曲率 。

如果在每一点至少有一个主曲率是零,则高斯曲率是零,这种曲面是可展曲面。对极小曲面,平均曲率在每一点是零。

设 是欧几里得空间中一个曲面,第二基本形式为 (,)。固定一点 ∈,以及在 点切空间的一个标准正交基 12。则主曲率是如下对称矩阵的本征值

如果选取 12 使得矩阵 是一个对角矩阵,则它们称为主方向。如果曲面已定向,则通常要求 (1, 2) 与给定的定向相同。

若没有一个特定的标准正交基,主曲率是形算子的本征值,而主方向是本征向量。

对高维欧几里得空间中超曲面,主曲率可类似地定义。主曲率是第二基本形式在一个标准正交基下矩阵 (i,j) 的本征值,主方向是对应的本征向量。

类似地,如果 是黎曼流形 中一个超曲面,则主曲率是其第二基本形式的本征值。如果 1, ..., n 是点 ∈ 的 个主曲率而 1, ..., n 是对应的标准正交本征向量(主方向),则 在 的截面曲率为

曲率线(lines of curvature 或 curvature lines)是总与一个主方向相切的曲线,它们是主方向场的积分曲线。过每个非脐点有两条曲率线,它们相交成直角。

在一个脐点附近曲率线有三类布局:星形(star)、柠檬形(lemon)以及檬星形(monstar,源于 )。为了纪念达布,这些点也称为达布脐点,他最先在他1896年的课程(Vol. 4, p455)中做了系统性研究。

柠檬形

檬星形

星形

在这些布局中,红色曲线是一类主方向的曲率线,而蓝色曲线是另一类的。

当一条曲率线对同一个主曲率有一个局部极值,则此曲线有一个脊点(ridge point)。曲面上曲线的脊点称为脊。脊曲线经过脐点。对星形布局有 3 条或 1 条脊线经过脐点,对 monstar 与 lemon 只有一条脊线经过。

相关

  • 塞杰斯塔塞杰斯塔(古希腊语:Ἕγεστα,转写:Egesta;西西里语:Siggésta)是古希腊城市之一,由伊利米人创建,位于意大利西西里岛西北部。塞杰斯塔在历史上长期和塞利农特对立。在公元前580年
  • 测谎机测谎机藉着量度和记录血压、脉搏、呼吸和皮肤导电反应(英语:Galvanic skin response)等由交感神经引起的生理反应,来判断正在回答问题的受测者是否说谎。由于此类生理反应是不由
  • 离子泵离子泵是真空泵的一种。离子泵的原理是将气体分子电离后,利用强电场将离子加速至电极板处并捕获,以此移除容器内的气体。 理想条件下,离子泵可以产生压强低至10-11毫巴的真空。
  • ThOsub2/sub二氧化钍,别名氧化钍,化学式ThO2。硝酸钍溶液与草酸溶液反应沉淀出草酸钍。经过滤、洗涤、干燥,并在650~800°C下灼烧,制得二氧化钍。二氧化钍是不溶于水的重质白色粉末,有放射性
  • 体育中心南开大学体育中心,即南开大学新体育馆,位于中华人民共和国天津市,始建于2005年1月,于2006年10月竣工及投用,占地约30,000平米,建筑面积24,600平米,总投资1.5亿元,落成时是教育部直属
  • 艾蕾娜·卡根艾蕾娜·卡根(Elena Kagan,1960年4月28日-) (发音为/ˈkeɪɡən/)是美国最高法院大法官。卡根于2010年8月7日正式上任。她是美国最高法院第112位大法官,同时也是该法院历史上第
  • 木村清久木村清久(生年不详—1615年)是安土桃山时代至江户时代初期的武将、大名。丰臣氏家臣。父亲是木村吉清。通称弥一右卫门。别名秀望。吉利支丹,洗礼名是(ジョアン)。生年不详。在丰
  • 田中仁田中仁(1976年9月20日-),日本男编剧。出身于东京都。动画公司东映动画出身,现为自由身。2012年的电视动画《DokiDoki!光之美少女》首次参加“光之美少女系列”的编剧。2015年播出
  • 永璂永.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-setting
  • 司马达等司马达等(日语:司馬 達等,?-?)。氏姓鞍部村主,飞鸟时代人物,他儿子鞍作多须奈,孙儿鞍作止利。日本书纪雄略天皇纪说他来自鞍部坚贵一族。一说他是南梁渡来人。日本的佛教被认为钦明