首页 >
海马区
✍ dations ◷ 2024-12-22 23:25:32 #海马区
海马体(英语:Hippocampus),是人类及脊椎动物脑中的重要部分。目前在有海马体的动物身上发现的海马体皆成对出现,分别位于左右脑半球。它是组成大脑边缘系统的一部分,位于大脑皮质下方,担当着关于短期记忆、长期记忆,以及空间定位的作用。灵长类的海马体位于内侧颞叶,拥有海马角及齿状回(英语:dentate gyrus)等构造。海马体名字来源于这个部位的弯曲形状貌似海马。在阿兹海默病中,海马体是首先受到损伤的区域:表现症状为记忆力衰退以及方向知觉的丧失。大脑缺氧(缺氧症)以及脑炎等也可导致海马损伤。
在动物解剖中,海马体属于脑的演化过程中最古老的一部分。来源于旧皮质的海马体在灵长类以及海洋生物中的鲸类中尤为明显。虽然如此,与进化树上相对年轻的大脑皮层相比,灵长类动物尤其是人类的海马体在端脑中只占很小的比例。相对新皮质的发展,海马体的增长在灵长类动物中的重要作用是使得其脑容量显著增长。解剖学家Giulio Cesare Aranzi(约1564年)首先使用海马(hippocampus)一词形容这一大脑器官,源于此部位貌似海马。这一部位最初被认为司控嗅觉,而非现在周知的记忆储存作用。俄国学者Vladimir Bekhterev于1900年左右基于对一位有严重记忆紊乱的病患者的长期观察,首先提出海马体与记忆相关。但是,其后的很长时间,学界习惯上关于海马体的作用都被认为和其他大脑边缘系统一样,司控情绪。1957年Scoville与Milner关于著名的病人H.M.的病例报告引起了众多科学家的关注,并使人开始认识到海马体对记忆起重要作用。为减轻H.M.时常发作的癫痫症状,其脑内侧颞叶被切除(包括当中的两个海马体),由此导致了一系列的相关空间以及时间的记忆损伤。重要的是HM仍然能完成程序性任务的学习(这一点与纹状体相关联)甚至有着高于常人水平的智商。H.M.的智能与陈述性记忆展现出显著的分裂。绝大多数的哺乳类动物海马体的大小取决于脑容量的大小,但是鲸类这一部位的发育相对不完全。海马体是哺乳类动物的中枢神经系统中的脑的部分(大脑皮质)中被最为详细研究过的一个部位。在解剖学以及组织学上,海马具有一目了然的明确构造。海马内部有形成形态美观的层面。也就是神经细胞的细胞体与其神经网区域呈层状排列。海马,是被称作“海马区”(hippocampal region)的大脑边缘系统的一部分。海马区可分为:齿状回(dentate gyrus)、海马、下托(subiculum)、前下托(presubiculum)、傍下托(parasubiculum)、内嗅皮质(entorhinal cortex)。这之中齿状回、海马、下托的细胞层为单层,合称“海马结构(hippocampal formation)”,其上下夹有低细胞密度层和无细胞层。此外的部位有复数的层面构成。齿状回与海马的单层构造对神经解剖学以及电生理学的研究进步作出了贡献。20世纪初,开始有科学家发现海马对于某些记忆以及学习有着基本性的作用。特别是1957年Scoville和Milner报告了神经心理学中很重要的一个病例。这是来自一位被称为H.M.的病人(亨利·古斯塔·莫莱森)的病者报告,亨利·莫莱森算是神经学领域中被检查得最详细的人。由于亨利长期被癫痫症状困扰,神经外科医生斯科维尔 (William Scoville)决定为他进行手术,他在他额头两侧做了局部麻醉,钻了两个小孔,用一根金属吸管吸出大部分海马组织(Hippocampus)以及海马周围的部分内侧颞叶组织。手术后,亨利的癫痫症状被有效控制,但自此以后失去了形成新的陈述性长时记忆的能力。这个发现令许多人想进一步了解海马区在记忆及学习机制的作用,因而成为一种流行,无论在神经解剖学、生理学、行为学等等各种不同领域,都对海马区做了相当丰富的研究。现在,海马区与记忆的关系已经为人所知。许多人对海马区与癫痫发作的关系也有很浓厚的兴趣。海马区在脑中为发作阈值低的部位。因为几乎所有癫痫患者的发作皆由海马区所起始,像这类以海马区为主的发作,有许多时候是很难以药物治疗的。而且,海马区中有一部分,尤其是内嗅皮质,为阿尔兹海默氏症最先产生病变的地方,海马区也显示出容易因贫血、缺氧状态而受伤害。海马区在解剖学以及机能构造上都是其它大脑皮质系统的研究样本。大脑皮质在最近开始被关注与研究,现在已知的关于中枢神经系统的突触传导的见解多受益于海马区的研究。而海马区的相关知识则多源于齿状回与海马的标本。尽管关于海马与其向邻近的大脑皮层的表述尚缺乏一致的观点,通常情况下术语上的“海马结构”指的是齿状回,CA1-CA3部位(或CA4,常称为hilus区并被认为是齿状回的一部分),以及脑下脚(另见阿蒙神之角)。CA1与CA3部位构成严格意义上的海马。信息进入海马时由齿状回流入CA3到CA1再到脑下脚,在每个区域输入附加信息在最后的两个区域输出。CA2只占海马的一个很小部分通常将其对海马的功能忽略,值得注意的一点是这一小区域似乎能抵抗由于例如癫痫等造成的大规模的细胞破坏。人们普遍认为这些区域的每一部分在海马的信息处理过程中都扮演着一个具有独特功能的角色,但迄今为止对每一区域功能的细节还不甚了解。心理学家与神经学家对海马的作用存在争论,但是都普遍认同海马的重要作用是将经历的事件形成新的记忆(情景记忆或自传性记忆)。一些研究学者认为应该将海马看作对一般的陈述性记忆起作用内侧颞叶记忆系统的一部分(陈述性记忆指的是那些可以被明确的描述的记忆,如“昨天晚饭吃了什么”这样的关于经历过的事情的情景记忆,以及“地球是圆的”这样的关于知识的概念记忆)。有迹象显示,虽然这些形式的记忆通常能终身持续,在一系列的记忆强化以后海马便中止对记忆的保持。海马的损伤通常造成难以组织新的记忆(顺行性失忆症),而且造成难以搜索过去的记忆(逆行性失忆症)。尽管这样的逆行性效果通常在脑损伤的很多年之前就开始扩展,一些情况下相对久远一些的记忆能够维持下来。这表明海马将巩固以后的记忆转入了脑的其他的部位。但是,旧的记忆是如何储存的要用实验来检测的话存在一些难点。另外,在一些逆行性失忆症案例中,在海马遭受损伤的数十年前的记忆也受到了影响,导致了这一关于旧的记忆的观点的争议。海马的损伤不会影响某一些记忆,例如学习新的技能的能力(如学习一种乐器),将设这样的能力依靠的是另外一种记忆(程序记忆)和不同的脑区域。有迹象表明著名的病人HM(作为治疗癫痫病的手段他的内侧颞叶被切除)有组织新的概念记忆的能力。有些证据提供以下的线索:空间讯息的储存与处理牵涉到海马体。在老鼠的海马区里,插一根记录单个神经细胞的电极(electrode),让老鼠在一个开放式的试验区域自由的跑动,老鼠沿高架轨道来回跑动,停在各端吃小食品作为奖励,同时记录神经细胞的动作电位 (action potential)和老鼠跑的路线及位置,当老鼠跑到实验房间的某个地方的时候,海马体内的某一个特定的神经细胞A就会动作 (active),而周围的其他细胞是不动作 (inactive)的,而跑到其他地方的时候,这个A细胞就不会动作 (inactive),而另外一个或多个细胞就会放电 (fire),这种对自身在环境中所处位置而产生对应反应的神经细胞,被称为定位细胞(place cells)。对于每个 place cell 所对应的实际位置区域便被定义为 place field。通过一系列的实验约翰·奥基夫 (O’Keefe) 推测,这些 space cells 组合在一起,形成了一个认知地图(cognitive map)。通过和其他在海马体内以及周围区域的神经细胞一起合作,place cells 其着如同一张地图的作用。老鼠实验的研究显示,海马体的神经元有空间放电区,这些细胞称为地点细胞(place cells)。如果老鼠发现自己处在某个地点,不论该老鼠移动的方向为何,有些细胞会发电,而大部分的细胞至少会对头的方向、移动方向感到敏感。在老鼠身上,有些细胞称为分野细胞(splitter cells),该种细胞的发电取决于动物的近期经验(回顾记忆;retrospective memory)、或是期待即将的为来(前瞻记忆;prospective memory)。根据不同的身处地点,不同的细胞会发电;因此,只要观察细胞的发电情形,就可能指出动物身处的地点。在人类身上,当人们在虚拟世界的城镇里在寻找方向时,就会牵涉到“地点细胞”。这样的发现是源于如下的研究:在严重癫痫患者的大脑里面植入电极,当作是患者在手术过程中诊断的方式。发现了“地点细胞”,让世人觉得海马体可能扮演“认知地图”(cognitive map)的角色,而认知地图就是环境格局的神经重现。然而,针对这样的观点,近期的证据提出怀疑,并且指出海马体对于“寻找方向”(navigation)更根本的过程非常重要。尽管如此,动物实验显示,即使要完成简单的空间记忆活动,健全的海马体是必要的(譬如把目的地藏住,要动物找路回去)。若海马体不健全,人类可能就无法记住曾经去过的地方、以及如何前往想去的地点。研究人员相信,若要在熟悉环境之间找出捷径、以及新的路线,海马体扮演极重要的角色。针对这样寻找方向的能力,有些人比其他人能力强;此外,大脑显影研究显示,这些寻找方向能力比较好的人,在寻找方向时,他们的海马体比较活跃。另外,伦敦计程车司机必须要记住很多地点,并且知道这些地点之间最直接的路线(他们必须通过严格的考试,该考试名为“知识”,英文名是“The Knowledge”,才能得到伦敦著名的黑色计程车“black cab”的驾驶执照)。在伦敦大学学院的研究显示,相较于一般民众,伦敦计程车司机的海马体体积较大,至于更有经验的计程车司机的海马体体积又更大。然而,有较大的海马体是否有助于成为计程车司机、或是成为计程车司机或以找捷径为生是否能够使得一个人的海马体变大仍待研究。在印第安那大学进行的老鼠实验提出了如下的可能性:在反复的迷宫实验里观察老鼠的表现,海马体的型态跟“两性异形”息息相关。对于将地点空间化、找出自己所在,公老鼠表现比较好,因为公老鼠的海马体体积比较大。2014年诺贝尔生理学或医学奖授予了约翰·奥基夫 (John O'Keefe)和莫泽夫妇、迈-布里特·莫泽 (May-Britt Moser)、 爱德华·莫泽 (Edvard Moser)。 奥基夫在1971年发现了海马区中的位置细胞(place cells),莫泽夫妇在2005年发现了内嗅皮质中的网格细胞(grid cells),它们构成了脑中定位系统的细胞基础(cells that constitute a positioning system in the brain)。从不同的角度观看红色海马的位置。海马在脑的部位。海马的基本路线,DG:海马齿状回、Sub:海马下托区、EC:内嗅皮质。尼氏染色猕猴大脑的冠状切面,(圆圈)显示海马。大脑的海马区(左)和海马(右)。
相关
- 人类菌群人类微生物群系(Human microbiome)又称为正常菌群(Normal Flora)是某些微生物与宿主在长期的进化过程中形成共生关系,对生物体无害的一类细菌。它们包括细菌,真菌,古菌,和病毒。虽然
- 公共卫生服务军官团军官团人员及应变部 马里兰州罗克威尔美国公共卫生服务军官团,是美国公共卫生局隶下的联邦制服部队(英语:Uniformed services of the United States),亦是美国七支制服军种之一
- 摩尔质量在化学中,摩尔质量(英文:molar mass)是每一摩尔化学元素或者化合物的质量,符号为 .mw-parser-output .serif{font-family:Times,serif}Mmol。摩尔质量是一种物质的宏观性质,而非微
- 开放科学开放科学(Open Science)是让各社会阶层的人,不分专业或是业余,都可以接触科学研究、资料以及相关传播访问的运动。开放科学的作法包括出版开放研究(英语:Open research),致力开放获
- 神导进化论神导演化论,或称“演化创造论”,不是一个科学意义上的理论学说,而是关于演化论学说的宗教解读观点。更确切地说,是关于经典宗教教义如何与生物演化的理解部分或完全相融的总体观
- 性别相关演化有性生殖的演化由若干个相互竞争的科学假说所描述。所有有性生殖的真核生物都来自一种单细胞、真核的共同祖先。很多原生生物,以及大多数多细胞的动物,植物和真菌,都进行有性生
- 隆河罗讷河(法语:Rhône;普罗旺斯语:Roun;德语:Rhone;意大利语:Rodano;均源自拉丁语Rhodanus)是欧洲主要河流之一。罗讷河这个名称的起源和含义还有争议。凯尔特起源说称Rhodanus或Rodanus
- EuS硫化亚铕是一种无机化合物,化学式为EuS。它是黑色粉末,在空气中稳定。在硫化亚铕中,铕的价态为+2价,而镧系元素通常显+3价。硫化亚铕的居里温度为16.6 K,在此温度之下是铁磁性固
- 泰伯泰伯(?-?),一作太伯,姬姓,是周部落首领古公亶父长子,因为太王第三子季历的儿子昌有“圣瑞”,所以太王希望以季历为继承人,然后传位给昌。于是作为季历的兄弟泰伯与仲雍不忍发生王位争夺
- 巫医神医,又称巫医,是透过神明、邪灵、符咒、巫蛊等超自然力量来行医治病的人。巫医起源甚早,《大荒西经》云:“有灵山,巫咸、巫即、巫彭、巫姑……十巫从此升降,百药爰在。”《离骚》