圆锥

✍ dations ◷ 2025-04-04 11:19:45 #圆锥
圆锥也称为圆锥体,是一种三维几何体,是平面上一个圆以及它的所有切线和平面外的一个定点确定的平面围成的形体。圆形被称为圆锥的底面,平面外的定点称为圆锥的顶点或尖端,顶点到底面所在平面的距离称为圆锥的高。通常“圆锥”一词用来指代正圆锥,也就是圆锥顶点在底面的投影是圆心时的情况。正圆锥可以定义为一个直角三角形绕其中一条直角边旋转一周得到的几何体,这个直角三角形的斜边称为圆锥的母线。顶点在底面的投影不在圆心,这样的圆锥称为斜圆锥。正圆锥可以由平面截圆锥面得到,斜圆锥则不能。倾斜平面截取圆锥面得到的几何形体叫做椭圆锥。一个直角锥和一个斜角锥正圆锥是基本的旋转体之一,由直角三角形以其中一条直角边所在的直线为旋转轴进行旋转得到。三角形的斜边长称为圆锥的母线。设圆锥的底面圆半径为 r {displaystyle r} ,圆锥的高为 h {displaystyle h} ,底面圆面积为 S {displaystyle S} ,体积为 V {displaystyle V} ,那么圆锥体的体积可以通过以下公式计算:其中底面圆面积: S = π r 2 . {displaystyle S=pi r^{2}.}圆锥的体积公式可以从祖暅原理推出。祖暅原理说明,如果两个高度相同的立体形体在所有等高截面上面积都相等,那么它们体积相等。以圆锥底面为基准面,放置一个底面积为 π r 2 {displaystyle pi r^{2}} 的正方锥,那么,在任何的高度 0 ≤ x ≤ h {displaystyle 0leq xleq h} 上,与基准面平行的平面截圆锥的截面面积都等于截正方锥的截面面积。所以圆锥的体积等于正方锥的体积,也就是 1 3 π r 2 h {displaystyle {frac {1}{3}}pi r^{2}h} 。另外,用现代的定积分方法也可以直接计算圆锥的体积公式,方法如下:圆锥的母线是一条从圆上的任何一点到锥体的顶点的直线,可被表达成 r 2 + h 2 {displaystyle {sqrt {r^{2}+h^{2}}}} ,其中 r {displaystyle r} 是圆锥底部的半径, h {displaystyle h} 是圆锥的高度。这可以由勾股定理证明。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的母线,对应的圆弧长为底部圆形的周长。设圆锥的母线为 l {displaystyle l} ,斜高可以表示为: l = r 2 + h 2 {displaystyle l={sqrt {r^{2}+h^{2}}}} 。设圆锥的表面积为 S t {displaystyle S_{t}} ,侧面积为 S c {displaystyle S_{c}} ,侧面积(也就是扇形的面积)可以用以下公式计算:表面积等于侧面积与底面圆面积的和,也就是:一个实心且质地均匀的正圆锥的重心在其底面与顶点连线上,位于顶点下 3 4 {displaystyle {frac {3}{4}}} 处。

相关

  • 量子生物学量子生物学是利用量子理论来研究生命科学的一门学科。该学科包含利用量子力学研究生物过程和分子动态结构。利用量子生物学研究量子水平的分子动态结构和能量转移,如果所得结
  • 保守治疗保守治疗,亦称为保守疗法(conservative therapy),指相对于有创操作(即有创伤的操作,如手术)的疗法,如药物治疗、物理治疗等。
  • 汉谟拉比法典《汉谟拉比法典》是古巴比伦第六代国王汉谟拉比颁布的一部法律,被认为是世界上最早的一部比较具有系统的法典,约公元前1754年(中年表(英语:middle chronology))颁布。1901年在埃兰
  • Gsub2/sub期G2期是间期的第三个也是最后一个阶段。细胞在S期完成了DNA复制后进入G2期,G2期结束后,前期随即开始,染色质凝聚为染色体,核膜也开始解体。G2期中细胞快速生长并大量合成有丝分裂
  • 晶格常数晶格常数(英语:lattice constant),或称晶格参数(英语:lattice parameter),是指晶格中晶胞的物理尺寸。三维空间中的晶格一般有 3 个晶格常数,分别用 a, b 和 c 来表示。但在立方晶体
  • 帖木儿帖木儿(波斯-阿拉伯文:تیمور,拉丁转写:Tēmōr,1336年4月8日-1405年2月18日),突厥化蒙古人,或译帖木耳,帖木儿汗国的创始埃米尔,为察合台语“铁”之意,出身于蒙古巴鲁剌思氏部落,136
  • 索尼索尼移动通信股份有限公司(英语:Sony Mobile Communications Inc.,日语:ソニーモバイルコミュニケーションズ株式会社),简称索尼移动(Sony Mobile),是一家跨国性移动电话制造公司,在日
  • 伊萨山芒特艾萨(Mount Isa)是位于澳大利亚昆士兰州西北部、接近北领地的一座内陆市镇,镇民人口近25,000,地区总人口有33,336(2007年)。芒特艾萨的行政层级属“市”,为昆士兰州西北部最重
  • 发粿发粿(闽南语)又叫发糕,客家语称之为钵粄、发粄、碗粄或起酵粄,是一种米食制品,流行于浙江、华南地区、港澳、台湾、印尼及马来西亚一带,是传统过年的食品,亦可用于祭祀或馈赠亲人。
  • 伊朗石油伊朗石油,1908年英国人威廉·克诺斯·德奇(英语:William Knox D'Arcy)在波斯(今伊朗)马斯吉德苏莱曼地区发现特大油田,并成立英波石油公司The Anglo-Persian Oil Company (APOC)进