费曼-卡茨公式

✍ dations ◷ 2025-04-04 07:10:01 #随机过程,偏微分方程,理查德·费曼

费曼-卡茨公式是一个数学公式与定理,得名于理查德·费曼和马克·卡茨,将随机过程和抛物型偏微分方程结合在一起。使用费曼-卡茨公式可以通过将某些抛物型偏微分方程的解写成随机过程的条件期望的方式,从而将求此类微分方程的数值解转化为模拟随机过程的路径。反过来,此一类随机过程的期望可以通过确定性的计算(偏微分方程求解)得到。考虑偏微分方程:

其中的 μ ,   σ ,   ψ , V {\displaystyle \mu ,\ \sigma ,\ \psi ,V} 存在。卡拉查斯和史雷夫在1988年证明了:当其余函数及 满足以下条件

的时候,解函数可以用费曼-卡茨公式表达为条件期望的形式。这些条件中并不保证解的存在性。要保证后者,需要更强的条件:

以上条件由弗里德曼在1975年给出。1980年克里洛夫提出用更简洁(同时更强)的条件代替,可以是:

所有的参数函数 μ ,   σ ,   ψ ,   V ,   f {\displaystyle \mu ,\ \sigma ,\ \psi ,\ V,\ f} 有下界。

在以上的条件下,偏微分方程的解唯一存在,并且满足费曼-卡茨公式的期望表达,同时也满足多项式增长条件。

为简化起见,以下只证明 f ( x , t ) = 0 {\displaystyle f(x,t)=0} 的情况。设偏微分方程的解函数为 u ( x , t ) {\displaystyle u(x,t)} 。对以下函数 Y s = e t s V ( X τ ) d τ u ( X s , s ) {\displaystyle Y_{s}=e^{-\int _{t}^{s}V(X_{\tau })\,d\tau }u(X_{s},s)} 使用伊藤公式,可以得到:

由于 d e t s V ( X τ ) d τ = V ( X s ) e t s V ( X τ ) d τ d s {\displaystyle de^{-\int _{t}^{s}V(X_{\tau })\,d\tau }=-V(X_{s})e^{-\int _{t}^{s}V(X_{\tau })\,d\tau }\,ds} ,等式右边第三项是高阶无穷小 o ( d t ) {\displaystyle o(dt)} ,因此可以忽略。再一次对 d u ( X s , s ) {\displaystyle du(X_{s},s)} 使用伊藤公式,会得到

等式右边的第一项里的括号中的式子恰好是微分方程的左边,因此等于0。剩下的是:

将这个等式的两边从 t {\displaystyle t} 积分到 T {\displaystyle T} ,可以得到:

两边取在已知 X t = x {\displaystyle X_{t}=x} 下的条件期望,并且注意到等式右边是一个伊藤积分,因此右边等于0。所以 E = E = u ( x , t ) {\displaystyle E=E=u(x,t)} 。注意到

就可以得出需要证明的结论。

其中的

也就是说 γ = σ σ {\displaystyle \gamma =\sigma \,\sigma ^{\prime }} ,其中 σ {\displaystyle \sigma ^{\prime }} 是矩阵 σ {\displaystyle \sigma } 的转置矩阵。

费曼-卡茨公式说明这个期望值等价于对某个扩散方程(抛物型偏微分方程)的解的积分。特别地,当条件   u V ( x ) 0 {\displaystyle \ uV(x)\geqslant 0} 满足时,若设   w ( x , 0 ) = δ ( x ) {\displaystyle \ w(x,0)=\delta (x)} 并满足 w t = 1 2 2 w x 2 u V ( x ) w {\displaystyle {\frac {\partial w}{\partial t}}={\frac {1}{2}}{\frac {\partial ^{2}w}{\partial x^{2}}}-uV(x)w} ,则有

费曼-卡茨公式也可以阐释成对某个特定形式的泛函积分求值的一种方法。如果:

其中的积分对所有的随机漫步路径取得,那么

其中   w ( x , t ) {\displaystyle \ w(x,t)} 是抛物型偏微分方程 w t = 1 2 2 w x 2 u V ( x ) w , {\displaystyle {\frac {\partial w}{\partial t}}={\frac {1}{2}}{\frac {\partial ^{2}w}{\partial x^{2}}}-uV(x)w,} 的解。并满足初始条件   w ( x , 0 ) = f ( x ) {\displaystyle \ w(x,0)=f(x)} .

相关

  • 古今字陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 巨大血小板综合征巨大血小板症候群(英语:giant platelet syndrome),又称为伯纳德-苏里尔症候群(Bernard–Soulier syndrome),是一种罕见的血小板异常性疾病,为常染色体隐性遗传。发病率仅百万分之一,大
  • ΩOmega(大写Ω,小写ω,中文音译:奥米伽、奥米加、俄梅戛、俄梅格、亚米茄、欧米茄、欧米伽、敖默加),是第二十四个希腊字母,亦是最后一个希腊字母。Omega 字面上的意思是“大 O”(o m
  • 海门斯柯奈尔‧海门斯 (法语:Corneille Jean François Heymans,1892年-1968年),比利时医学家,因发现了颈动脉窦和主动脉弓调节呼吸的作用,于1939年获得1938年度的诺贝尔生理学或医学奖。
  • TGF-β乙型转化生长因子(Transforming Growth Factor Beta, TGF-β)是存在于每个人体内的免疫调节因子,帮助改善过敏体质、调节免疫系统正常发展。TGF-β有三种异构物,其中‘TGF-β2’
  • 反应停事件反应停事件始于1950年代,多个国家的孕妇在服用止吐药“反应停”(沙利窦迈(Thalidomide))后,在全世界共产下了约1.2万名畸形儿。1961年11月起,“反应停”陆续在各国被强制撤回。德国
  • 查尔斯·W·弗雷班克斯查尔斯·华伦·费尔班克斯(Chareles Warren Fairbanks,1852年5月11日-1918年6月4日),美国政治人物,共和党人,曾任第26任美国副总统、联邦参议员等职。阿拉斯加州第二大城市费尔班克
  • 皇帝会战 法国 英国 美国 1915年1916年1917年1918年皇帝会战(德语:Kaiserschlacht),又称作鲁登道夫攻势(英语:Ludendorff Offensive)或春季攻势(德语:Frühjahrsoffensive),是第一次世界大战由
  • 阿波斯托洛斯安德列亚斯角阿波斯托洛斯安德列亚斯角(希腊语:Ακρωτήριο Αποστόλου Ανδρέα,土耳其语:Zafer Burnu)是位于地中海国家北塞浦路斯土耳其共和国东北部卡尔帕斯半岛的海
  • 宝实宝实(1526年-?): 兴祖直皇帝福满第六子,明朝时期女真人物。早年出生于佛阿拉城,后随家搬至赫图阿拉城。成年后定居章佳城,家境贫寒。次子阿哈纳向萨克达部巴斯翰之妹求婚时被对方拒