无名氏定理

✍ dations ◷ 2025-05-17 13:46:18 #无名氏定理

在博弈论中,无名氏定理(英语:folk theorem)是一类描述重复博弈纳什均衡的定理。起初,无名氏定理仅关注无穷博弈的纳什均衡。在20世纪50年代,这类定理已经广受博弈论学者知晓,但并没有人发表它,所以称为无名氏定理。1971年发表的Friedman定理考虑了无穷博弈的一系列子博弈精炼纳什均衡(英语:Subgame perfect equilibrium)(SPE),把定理的初始版本推广到了更强的均衡概念上。

无名氏定理指出,如果参与者对未来足够有耐心(也即贴现因子 δ 1 {\displaystyle \delta \to 1} ),对于任意可行、满足个人理性假设的一组收益 v = ( v 1 , , v n ) {\displaystyle v=(v_{1},\cdots ,v_{n})} ,都存在着一个子博弈精炼纳什均衡,使得第 i {\displaystyle i} 个参与者的平均收益就是 v i {\displaystyle v_{i}} 。换言之,任何程度的合作(只要是可行的且满足个人理性)都可以通过一个子博弈精炼纳什均衡来达成。

例如,在只有一期的囚徒困境中,两个参与者都选择合作并非纳什均衡,唯一的纳什均衡就是两个人都选择背叛。根据无名氏定理,如果囚徒困境重复无穷多次,并且参与者足够有耐心,就会存在两个参与者都合作的纳什均衡。但在有限期囚徒困境中,最后一期一定会双方都背叛,从而倒数第二期双方也会背叛,以此类推,唯一的子博弈精炼纳什均衡就是双方一直背叛,不会有合作出现。

重复博弈中的纳什均衡应该满足以下两个性质:

无名氏定理有若干种,有些考虑有限重复博弈,有些考虑无限重复博弈。

在不考虑贴现的无穷博弈中,参与者都是有耐心的。在任何时间点,相同的效用带来的收益都是相同的。所以在无穷博弈中,每个参与者的收益就等于每一期博弈获取效用的总和。

就无穷博弈而言,总收益的计算通常是平均效用取极限以后的下确界。假设第 t {\displaystyle t} 期参与者 i {\displaystyle i} 选择的行动是 x t {\displaystyle x_{t}} ,那么他的总收益就是:

其中 u i {\displaystyle u_{i}} 表示每个阶段博弈中,参与者 i {\displaystyle i} 的效用函数。

这种情况下,无名氏定理指出:阶段博弈中满足个人理性且可行的行动在无穷博弈中都是纳什均衡。

考虑冷酷战略(英语:Grim trigger)。所有参与者都按照预定的策略进行每一期博弈。如果在某一期中有人没有使用预定策略,从下一期开始所有人永远选择让这个人只能拿到最小最大收益的策略。这样,出偏差的人的总收益也只能是最小最大收益,所以所有人都愿意按照预定策略行事。:139

上述纳什均衡不一定是一个子博弈精炼均衡。如果实施惩罚对其他人的收益影响也很大,那么惩罚就是不可信的。

要想达到子博弈精炼均衡,每次有人偏离预定策略时,惩罚不应该一直实施下去,而只应持续到出偏差的人在那一期博弈带来的额外收益得到抵消为止。之后,大家依旧按照预定策略继续博弈。:146–149

因为计算总收益的方法是平均收益取极限,所以有限期的惩罚并不会影响总收益。这样,这就是一个子博弈精炼纳什均衡。

设贴现因子 δ {\displaystyle \delta } 满足 0 < δ < 1 {\displaystyle 0<\delta <1} ,无穷博弈的总收益为:

贴现因子的大小反映出参与者的耐心高低。

这种情况下的无名氏定理指出,每个人的总收益将严格大于最小最大收益。

相关

  • 鱼藤酮鱼藤酮(Rotenone),又称毒鱼藤(Tubatoxin),是一种无色、无味的,酮类结晶化合物。可从多种豆科及藤本植物(例如:鱼藤)的种子、茎部和根部提取,是一种天然的广谱杀虫剂。 是鱼藤根中的主要
  • 旧石器时代中期旧石器时代中期是欧洲、非洲和亚洲人类历史中旧石器时代的第二个阶段,时间跨度大约是从30万年前起至3万年前的这一段时间。在此期间尼安德特人在欧洲蓬勃发展,而现代人在大约1
  • 风景风景是指可见的地表景色,包括地貌的特征、动物、植物、自然现象,如闪电、气候现象,以及人类的活动,如建筑物等。风景的概念起源于绘画,人类绘画早先的主题是动物,然后是人类自己,最
  • 1410年重要事件及趋势重要人物
  • 版画版画是通过印刷手段产生的视觉艺术形式。和其他视觉艺术所不同的是,版画是通过版面的反转或者漏透而制作的,也可以说它是具有间接性和复数性的。常见的版画有蚀刻版画、油印木
  • 国民年金国民年金保险,简称国民年金、国保,法源依据《国民年金法》,于2007年7月20日经立法院三读通过,是中华民国于2008年10月1日开始实施的一项社会保险制度,主要的纳保对象为未参加军保
  • α-鹅膏菌素α-鹅膏蕈碱(α-amanitin)是一种八氨基酸的环肽,它可能是毒伞肽中毒性最强的化合物。包括α-鹅膏蕈碱的毒伞肽类物质主要存在于鹅膏菌属的物种,例如毒鹅膏。α-鹅膏蕈碱的口服半
  • 萤火《萤火》是熊宝贝乐团的第二张单曲,于2008年5月31日发行。饼干(主唱·贝斯手)在访问中提到,此张EP是一个关于“失去、追寻,与希望”的故事,如果灰色是一部曲的话,那萤火就是二部曲
  • 胡佛胡佛可以指:人名:建筑:区域:
  • 加利福尼亚州最高法院加利福尼亚州最高法院(英文:Supreme Court of California)是加利福尼亚州地区司法系统的终审法院,总部位于旧金山的厄尔·沃伦大楼内,总部大楼的命名是为了纪念第14任美国首席大