邻里成分分析

✍ dations ◷ 2025-11-08 00:40:34 #多变量统计,资料分析,统计模型

邻里成分分析(Neighborhood components analysis,NCA)是一种监督式学习的方法,根据一种给定的距离度量算法对样本数据进行度量,然后对多元变量数据进行分类。在功能上其和k近邻算法的目的相同,直接利用随即近邻的概念确定与测试样本临近的有标签的训练样本。

邻里成分分析是一种距离度量学习方法,其目的在于通过在训练集上学习得到一个线性空间转移矩阵,在新的转换空间中最大化平均留一(LOO)分类效果。该算法的关键是与空间转换矩阵相关的的一个正定矩阵A,该矩阵A可以通过定义A的一个可微的目标函数并利用迭代法(如共轭梯度法、共轭梯度下降法等)求解得到。该算法的好处之一是类别数K可以用一个函数f(确定标量常数)来定义。因此该算法可以用来解决模型选择的问题。

为了定义转换矩阵A,我们首先定义一个在新的转换矩阵中表示分类准确率的目标函数,并且尝试确定A*使得这个目标函数最大化。

A = argmax A f ( A ) {\displaystyle A^{*}={\mbox{argmax}}_{A}f(A)}

对一个单一的数据点进行类别预测时,我们需要考虑有一种给定的距离度量确定的K个最近邻居,根据 k {\displaystyle k} 个近邻的类别标签投票得到该样本的类别。这就是留一(Loo)分类算法。但是对所有数据集进行一个线性空间变换之后,新空间中的同一样本的最近邻居集可能跟原空间的最近邻居集有很大差别。特别的,为了平滑 A {\displaystyle A} 中元素的变化,我们可以使该样本的最近邻居集离散化,也就是说任意一个基于一个点的最近邻居集的目标函数f都是离散的,因此也是不连续的。

我们可以用一种受随机梯度下降法算法的启示得到的方法解决该问题。在新的转换空间中,我们并不是对每个样本点用留一分类方法求取 k {\displaystyle k} 个最近邻居,而是在新空间中考虑整个数据集作为随机最近邻居。我们用一个平方欧氏距离函数来定义在新的转换空间中的留一数据点与其他数据的距离,该函数定义如下:

p i j = { e | | A x i A x j | | 2 k e | | A x i A x k | | 2 , if j i 0 , if j = i {\displaystyle p_{ij}={\begin{cases}{\frac {e^{-||Ax_{i}-Ax_{j}||^{2}}}{\sum _{k}e^{-||Ax_{i}-Ax_{k}||^{2}}}},&{\mbox{if}}j\neq i\\0,&{\mbox{if}}j=i\end{cases}}}

输入点 i {\displaystyle i} 的分类准确率是与其相邻的最近邻居集 C i {\displaystyle C_{i}} 的分类准确率: p i = j n p i j {\displaystyle p_{i}=\sum _{j}^{n}p_{ij}\quad } 其中 p i j {\displaystyle p_{ij}} j {\displaystyle j} i {\displaystyle i} 的最近邻居的概率。定义用全局数据集作为随机最近邻的留一分类方法确定的目标函数如下:

f ( A ) = i j C i p i j = i p i {\displaystyle f(A)=\sum _{i}\sum _{j\in C_{i}}p_{ij}=\sum _{i}p_{i}}

由随机近邻理论知,与单一样本点 C i {\displaystyle C_{i}} 的同类别的在随机近邻域 C i {\displaystyle C_{i}} 样本点 j {\displaystyle j} 可以表示为:

P ( C l a s s ( X i ) = C l a s s ( X j ) ) = p i j {\displaystyle P(Class(X_{i})=Class(X_{j}))=p_{ij}} 。因此,单一样本点 i {\displaystyle i} 的预测类别是随机近邻集中其他样本类别的某种组合,其准确率与随机近邻域 C i {\displaystyle C_{i}} 中与 i {\displaystyle i} 同类别的 y {\displaystyle y} 所占的比例有关。因此,目标函数可以更好的选为:

f A = 2 A i j C i p i j ( x i j x i j T k p i k x i k x i k T ) {\displaystyle {\frac {\partial f}{\partial A}}=-2A\sum _{i}\sum _{j\in C_{i}}p_{ij}\left(x_{ij}x_{ij}^{T}-\sum _{k}p_{ik}x_{ik}x_{ik}^{T}\right)}

这里用到了连续梯度下降算法。

最大化函数f(.)相当于最小化预测的类分布和真正的类分布之间的差距,即使两者更接近。故目标函数和梯度可以重新写作:

g ( A ) = i log ( j C i p i j ) = i log ( p i ) {\displaystyle g(A)=\sum _{i}\log \left(\sum _{j\in C_{i}}p_{ij}\right)=\sum _{i}\log(p_{i})}

g A = 2 A i ( k p i k x i k x i k T j C i p i j x i j x i j T j C i p i j ) {\displaystyle {\frac {\partial g}{\partial A}}=2A\sum _{i}\left(\sum _{k}p_{ik}x_{ik}x_{ik}^{T}-{\frac {\sum _{j\in C_{i}}p_{ij}x_{ij}x_{ij}^{T}}{\sum _{j\in C_{i}}p_{ij}}}\right)}

在实际应用中运用此方法得到优化的 A {\displaystyle A} 与之前的方法得到的 A {\displaystyle A} 有相似的预测结果。

邻里成分分析是由Jacob Goldberger, Sam Roweis, Ruslan Salakhudinov和Geoff Hinton 等人在2004年在多伦多大学计算机系创建的。

相关

  • 类花生酸类花生酸(英语:Eicosanoid,又称为类二十烷酸或是类花生油酸)是由含二十个碳的多元不饱和脂肪酸衍生而来的脂类中的一个家族,这类化合物都含有二十个碳原子,因此又被称为“类二十烷
  • 正未来党外交 · 南北统一 · 阳光政策 · 行政区划 · 人权(朝鲜语:대한민국의 인권)政治主题正未来党(韩语:바른미래당/바른未來黨 Bareun Mirae Dang;也译作正确未来党)是大韩民国的
  • 杰斐逊·戴维斯杰斐逊·戴维斯(英语:Jefferson Davis,1808年6月3日-1889年12月6日),美国陆军军官、政治人物,因于美国内战期间担任唯一一任美利坚联盟国总统而知名。戴维斯于内战之前历事密西西比
  • 2019冠状病毒病圭亚那疫情2019冠状病毒病圭亚那疫情,介绍在2019新型冠状病毒疫情中,圭亚那发生的情况。圭亚那于2020年3月11日录得首个病例,是一位从纽约旅行归来的女性。2020年3月11日,圭亚那记录了首例
  • 前苏格拉底哲学前苏格拉底 · 古代 中世纪 · 文艺复兴 17世纪 · 18世纪 · 19世纪 · 20世纪 后现代 · 当代前苏格拉底哲学是西方哲学中,在苏格拉底之前的,或者是和苏格拉
  • 玛丽·科尔文玛丽·凯瑟琳·科尔文(英文:Marie Catherine Colvin;1956年1月12日-2012年2月22日),又译玛丽·卡彬,是著名的战地记者,标志性特征是“独眼女侠”,生前三十多年一直在战争的前线报导新
  • 柳巷芳草《柳巷芳草》(英语:)是1971年的犯罪惊悚电影,叙述一名应召女子帮助侦探解决一出悬案。导演为艾伦·帕库拉。由简·方达、唐纳德·苏泽兰、查理斯·乔菲(英语:Charles Cioffi)及罗伊
  • 红颈绿鸠红颈绿鸠(学名:)是鸠鸽科绿鸠属的一种。分布于东南亚,包括柬埔寨、印度尼西亚、文莱、马来西亚、缅甸、菲律宾、新加坡、泰国和越南等。它们的自然栖息地是热带及副热带低地雨林
  • 青象牙贝青象牙贝(学名:),是象牙贝目象牙贝科象牙贝属的一种。主要分布于印度尼西亚、台湾,常栖息在沿岸。
  • 同乐运动会同乐运动会(英语:Gay Games,又称同志运动会)是一个由同志社区举办的体育和文化活动。同志运动会于1982年始于旧金山,创办者是汤姆·沃德尔(英语:Tom Waddell)医生,他的目标是发扬包容