图同构

✍ dations ◷ 2025-02-23 22:50:55 #图论,离散数学,机器学习,计算机科学中未解决的问题,数学中未解决的问题

图同构(Graph Isomorphism)描述的是图论中,两个图之间的完全等价关系。在图论的观点下,两个同构的图被当作同一个图来研究。

只有节点数目相同(即同阶)的两个图才有可能同构。两个简单图 G {\displaystyle G} H {\displaystyle H} 称为是同构的,当且仅当存在一个将 G {\displaystyle G} 的节点 1 , , n {\displaystyle 1,\ldots ,n} 映射到 H {\displaystyle H} 的节点 1 , , n {\displaystyle 1,\ldots ,n} 的一一对应 σ {\displaystyle \sigma } ,使得 G {\displaystyle G} 中任意两个节点 i {\displaystyle i} j {\displaystyle j} 相连接,当且仅当 H {\displaystyle H} 中对应的两个节点 σ ( i ) {\displaystyle \sigma (i)} σ ( j ) {\displaystyle \sigma (j)} 相连接。如果 G {\displaystyle G} H {\displaystyle H} 是有向图,那么同构的定义中还进一步要求对于 G {\displaystyle G} 中任意两个相连的节点 i {\displaystyle i} j {\displaystyle j} ,边 ( i , j ) {\displaystyle (i,j)} 与它在 H {\displaystyle H} 中对应的边 ( σ ( i ) , σ ( j ) ) {\displaystyle (\sigma (i),\sigma (j))} 方向相同。类似地可以定义两个多重图的同构关系。

一个具体的例子如下,为方便起见,两图中对应节点被染成了相同的颜色:

σ ( b ) = 6 {\displaystyle \sigma (b)=6}

σ ( c ) = 8 {\displaystyle \sigma (c)=8}

σ ( d ) = 3 {\displaystyle \sigma (d)=3}

σ ( g ) = 5 {\displaystyle \sigma (g)=5}

σ ( h ) = 2 {\displaystyle \sigma (h)=2}

σ ( i ) = 4 {\displaystyle \sigma (i)=4}

σ ( j ) = 7 {\displaystyle \sigma (j)=7}

要注意的一点是,在图论中,一幅图经常可以有多种不同的方式在纸上或屏幕上画出来,所以两个看起来很不同的图也可能是同构的。尤其当图的节点数比较大时,很难一眼从画出的图上判断它们是否同构。

在计算机科学、数学和统计学中,图同构问题是复杂度理论研究中经常讨论的热点话题之一。图同构问题容易和图匹配问题混淆:

严格地说,两个问题是不同的,显然后者是比前者更进一步的问题,但也有一些论文将两者混同并用Graph Isomorphism一词指代Graph Matching问题。迄今尚无人严格证明两者难度在P/NP意义下是相等的(要证明这一点,就必须证明第一个问题的答案可被多项式时间约化为第二个问题的答案,即:存在一个正常数 d > 0 {\displaystyle d>0} ,使得对于任何一个可以判定两个图是否同构的算法 J {\displaystyle {\cal {J}}} ,若 J {\displaystyle {\cal {J}}} 输出的判定为真,那么在参考 J {\displaystyle {\cal {J}}} 输出的结果的基础上再花费至多 O ( n d ) {\displaystyle O(n^{d})} 时间就可找出至少一个做成图同构的一一对应)。

判定图同构(Graph Isomorphism)的计算复杂度是未知的,因此现在仅能被粗略地归类为NP;图匹配(Graph Matching)问题本身的复杂度同样是未知的,但在机器学习领域非常流行的一种约化版本将其视为NP困难的QAP(英语:Quadratic assignment problem)问题的特殊情形

其中 F {\displaystyle \|\cdot \|_{F}} 表示矩阵的Frobenius模。该QAP约化相当于问:要求找到从 G {\displaystyle G} H {\displaystyle H} 的一一映射,使得在此映射下两个图最相似。显然图匹配问题是该QAP问题的一种特殊情形,因为当两个图并不同构时,寻找两图间同构映射的尝试是没有意义的,但寻找两图间的一个最大化相似度的“最优映射”仍然是有意义的。尤其在当所给的数据并非图的精确观测而是被随机误差污染时,更常用该约化形式并予以近似求解。另有与两个问题相关的更进一步的问题:

子图同构已被证明是NP完全问题。

2015年,芝加哥大学教授、匈牙利裔计算机科学家László Babai(英语:László Babai)宣布证明了图同构问题可以在准多项式(Quasi-polynomial)时间内求解。哈洛德·贺欧夫各特指出了文中的一处错误,随后Babai宣布修正了该错误并更新了论文。

对于以下的特殊情形,图同构问题是可以多项式时间甚至快速求解的:

与理论研究主要关注计算复杂度不同,对实用解法的研究主要关注具体应用中的实践计算速度。P/NP问题只关注时间复杂度中 n {\displaystyle n} 的指数,而不关注其系数大小。即使一个算法是多项式时间的,它也可能因 n {\displaystyle n} 的系数过大导致的速度太慢及/或数值上不稳定,而在实践中根本没有用处;反之,一个优秀的实用解法,即使不能保证是多项式时间的,在很多应用上也可能比一些多项式时间的解法快得多。

在图同构问题上,目前处于领先性能的实用解法是由澳大利亚计算机科学家Brendan McKay(英语:Brendan McKay)在1980年代提出的NAUTY,其对每一个图 G {\displaystyle G} 估计其节点的一个标准索引排列(Canonical Indexing,或称Canonical Labeling)。标准索引可以非常耗时,而NAUTY算法通过探索图的自同构性群的性质,对索引步骤进行剪枝,大大加快了标准索引的计算速度。NAUTY自从提出以来,成为了几乎每一篇研究图同构和图匹配问题实用解法的论文必定要进行比较的竞争对手。

其它流行的方法包括:各色启发式算法;对QAP约化进行SDP(英语:Semidefinite programming)松弛;近似计算图之间的某种不依赖于节点顺序的距离,例如图之间的编辑距离和cut distance等,这些距离的精确计算通常是NP困难的。

相关

  • 构象构象异构(英语:Conformational isomerism,又译结构异构或构形异构,指由于原子环绕于化学键四周,而导致结构式相同,却具有化学构象或构象异构体之差异的分子现象。有三种效应,会使某
  • 内蒙古科技大学内蒙古科技大学是内蒙古自治区直属大学。位于内蒙古自治区包头市。以工科为主,其冶金专业尤为出色。以前为冶金部直属大学。原为包头钢铁学院,2003年,包头钢铁学院与包头医学院
  • 乌斯怀亚乌斯怀亚(西班牙语:Ushuaia)是阿根廷火地省的首府,位于大火地岛南岸,座落在群山环抱之中,远眺比格尔海峡,被认为是世界最南端的城市。2010年普查人口为56,956人。一条以阿根廷国父
  • 2004年美国电影学会奖2004年美国电影学会奖(英语:American Film Institute Awards 2004)为表彰2004年年度最佳前10大电影与电视剧。
  • 罗特劳特·苏珊娜·贝尔纳罗特劳特·苏珊娜·贝尔纳(德语:Rotraut Susanne Berner,1948年8月26日-)是德国女插画家,平面设计师。2016年国际安徒生插画家奖得主。作为一名自由插画师,她专注于儿童和青少年主
  • 2007年世界房车锦标赛葡萄牙站2007年世界房车锦标赛葡萄牙站是2007年度世界房车锦标赛的第六站赛事,正式比赛在2007年7月8日于葡萄牙博阿维斯塔赛道上举行。这是第一次在葡萄牙举行赛事。第一回合由雪佛兰
  • 爱德华·盖莱克爱德华·盖莱克(波兰语:Edward Gierek;1913年1月6日-2001年7月29日),是一位波兰共产主义政治家。1913年生于波兰南方索斯诺维茨的波拉博卡。4岁那年,父亲在一次煤矿的意外事故中丧
  • 桃儿七属桃儿七属(学名:)是小檗科下的一个属。该属仅有桃儿七()一种,分布于中国西南和西北部以及锡金、尼泊尔、印度北部、巴基斯坦和阿富汗等地。
  • 白兰 (电影)《白兰》(韩语:파이란,英语:),是2001年上映的一出韩国电影,改编自浅田次郎短篇小说《情书》。张柏芝凭本片获得第39届韩国电影大钟奖最佳女主角提名。两颗异地的心﹐既近亦远……。母
  • 红砷镍矿红砷镍矿是一个砷和镍的矿物,分子式为NiAs,其中砷占 56.1%而镍占43.9%,另外红砷镍矿也含有微量的钴、硫和铁。