迭代稀疏渐近最小方差算法

✍ dations ◷ 2025-09-10 07:39:50 #医学成像,信号处理,断层扫描,估计理论,电信理论,滤波器理论

迭代稀疏渐近最小方差算法是用于信号处理中的谱估计和到达方向(DOA)估计的无参数超分辨率算法。 这个名称是为了强调渐近最小方差(AMV)标准的创造基础。 它是在恶劣环境下恢复多个高相关源的幅度和频率特性的有力工具,例如有限数量的快照,低信噪比。 它可以用于合成孔径雷达。

迭代稀疏渐近最小方差算法是一种基于压缩感知的超高分辨率成像程式, 可以用于合成孔径雷达成像, 信号处理, 核磁共振成像等医学影像领域。

SAMV算法的公式在DOA估计的背景下作为反问题给出。假设 M {\displaystyle M} -元素 均匀线性阵列(ULA)分别接收从位于 θ = { θ a , , θ K } {\displaystyle \mathbf {\theta } =\{\theta _{a},\ldots ,\theta _{K}\}} 位置发出的 K {\displaystyle K} 窄带信号。 ULA中的传感器在特定时间累积 N {\displaystyle N} 快照。 M × 1 {\displaystyle M\times 1} 维快照向量是

其中 A = {\displaystyle \mathbf {A} =} 是转向矩阵, x ( n ) = T {\displaystyle {\bf {x}}(n)=^{T}} 包含源波形, 和 e ( n ) {\displaystyle {\bf {e}}(n)} 是噪音词。假设 E ( e ( n ) e H ( n ¯ ) ) = σ I M δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {e}}(n){\bf {e}}^{H}({\bar {n}})\right)=\sigma {\bf {I}}_{M}\delta _{n,{\bar {n}}}} , δ n , n ¯ {\displaystyle \delta _{n,{\bar {n}}}} 是 Dirac delta 函数 并且它仅等于1,唯一存在 n = n ¯ {\displaystyle n={\bar {n}}} 否则为0。并且假设 e ( n ) {\displaystyle {\bf {e}}(n)} and x ( n ) {\displaystyle {\bf {x}}(n)} 是独立的,而 E ( x ( n ) x H ( n ¯ ) ) = P δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {x}}(n){\bf {x}}^{H}({\bar {n}})\right)={\bf {P}}\delta _{n,{\bar {n}}}} , where P = Diag ( p 1 , , p K ) {\displaystyle {\bf {P}}=\operatorname {Diag} ({p_{1},\ldots ,p_{K}})} . Let p {\displaystyle {\bf {p}}} 是包含未知信号功率和噪声方差的向量, p = T {\displaystyle {\bf {p}}=^{T}} .

y ( n ) {\displaystyle {\bf {y}}(n)} 的协方差矩阵,其中有关 p {\displaystyle {\boldsymbol {\bf {p}}}} 的是

该协方差矩阵可以通过样本协方差矩阵进行传统估计 R N = Y Y H / N {\displaystyle {\bf {R}}_{N}={\bf {Y}}{\bf {Y}}^{H}/N} ,其中 Y = {\displaystyle {\bf {Y}}=} 。将向量化运算符应用于矩阵 R {\displaystyle {\bf {R}}} 后,获取的向量 r ( p ) = vec ( R ) {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})} 与未知参数线性相关 p {\displaystyle {\boldsymbol {\bf {p}}}}

r ( p ) = vec ( R ) = S p {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})={\bf {S}}{\boldsymbol {\bf {p}}}} ,

其中 S = {\displaystyle {\bf {S}}=} , S 1 = {\displaystyle {\bf {S}}_{1}=} , a ¯ k = a k a k {\displaystyle {\bar {\bf {a}}}_{k}={\bf {a}}_{k}^{*}\otimes {\bf {a}}_{k}} , k = 1 , , K {\displaystyle k=1,\ldots ,K} , 和使 a ¯ K + 1 = vec ( I ) {\displaystyle {\bar {\bf {a}}}_{K+1}=\operatorname {vec} ({\bf {I}})} .

要从统计的 r N {\displaystyle {\bf {r}}_{N}} 去估算 p {\displaystyle {\boldsymbol {\bf {p}}}} ,我们基于渐近最小方差准则开发了一系列迭代SAMV方法。从开始,从协方差矩阵 Cov p Alg {\displaystyle \operatorname {Cov} _{\boldsymbol {p}}^{\operatorname {Alg} }} 的任意一致的估计值 p {\displaystyle {\boldsymbol {p}}} ,基于二阶统计值 r N {\displaystyle {\bf {r}}_{N}} ,以实数对称-正定矩阵为界

其中 S d = d r ( p ) / d p {\displaystyle {\bf {S}}_{d}={\rm {d}}{\bf {r}}({\boldsymbol {p}})/{\rm {d}}{\boldsymbol {p}}} 。此外,这个下界是通过最小化得到的 p ^ {\displaystyle {\hat {\bf {p}}}} 的渐近分布的协方差矩阵得到的。 ,

其中 f ( p ) = H C r 1 . {\displaystyle f({\boldsymbol {p}})=^{H}{\bf {C}}_{r}^{-1}.}

因此,可以迭代地获 p {\displaystyle {\boldsymbol {\bf {p}}}} 的估计值。 { p ^ k } k = 1 K {\displaystyle \{{\hat {p}}_{k}\}_{k=1}^{K}} 和最小化 f ( p ) {\displaystyle f({\boldsymbol {p}})} σ ^ {\displaystyle {\hat {\sigma }}} 可借由以下计算获得。

假设 p ^ k ( i ) {\displaystyle {\hat {p}}_{k}^{(i)}} σ ^ ( i ) {\displaystyle {\hat {\sigma }}^{(i)}} 在第 i {\displaystyle i} 迭代中已被估算到某种程度, 第 ( i + 1 ) {\displaystyle (i+1)} 迭代可以被精简成,

其中 R {\displaystyle {\bf {R}}} 的估计值在第 i {\displaystyle i} 迭代是 R ( i ) = A P ( i ) A H + σ ^ ( i ) I {\displaystyle {\bf {R}}^{(i)}={\bf {A}}{\bf {P}}^{(i)}{\bf {A}}^{H}+{\hat {\sigma }}^{(i)}{\bf {I}}} with P ( i ) = Diag ( p ^ 1 ( i ) , , p ^ K ( i ) ) {\displaystyle {\bf {P}}^{(i)}=\operatorname {Diag} ({\hat {p}}_{1}^{(i)},\ldots ,{\hat {p}}_{K}^{(i)})} .

基于大多数压缩感知的源定位技术的分辨率受到覆盖位置参数空间的方向网格的精细度的限制。 在稀疏信号恢复模型中,真值信号的稀疏性 x ( n ) {\displaystyle \mathbf {x} (n)} 取决于超完备字典 A {\displaystyle {\bf {A}}} 中相邻元素之间的距离因此, 会出现选择最佳超完备字典的难度。计算复杂度与方向网格的精细度成正比,高密度网格在计算上不实用。为了克服网格强加的分辨率限制,提出了无网格SAMV-SML(迭代稀疏渐近最小方差 - 随机最大似然, 它借由迭代的最小化随机最大似然估计的消耗函数,相对于单一纯数 θ k {\displaystyle \theta _{k}} ,改进了位置估计 θ = ( θ 1 , , θ K ) T {\displaystyle {\boldsymbol {\bf {\theta }}}=(\theta _{1},\ldots ,\theta _{K})^{T}}

在 SISO 雷达 / 声纳 距离 - 多普勒成像问题中使用SAMV算法的典型应用。该成像问题是单快照应用,并且包括与单快照估计兼容的算法,即匹配滤波器(MF,类似于周期图或反投影,这通常被有效地实现为快速傅里叶变换(FFT)),IAA 和SAMV算法的变体(SAMV-0)。 模拟条件与之相同: 一个 30 {\displaystyle 30} -元素的多项 pulse compression使用P3代码相同作为发射脉冲,模拟总共九个运动目标。在所有移动目标中,三个是 5 {\displaystyle 5} dB功率,其余六个是 25 {\displaystyle 25} dB功率。假设接收信号被 0 {\displaystyle 0} dB功率的均匀高斯白噪声污染。

匹配滤波器检测结果在多普勒和范围域都受到严重的拖尾和光谱泄漏影响,因此无法区分 5 {\displaystyle 5} dB目标。相反,IAA算法提供增强的成像结果,具有可观察的目标范围估计和多普勒频率。 SAMV-0方法提供高度稀疏的结果并完全消除拖尾效应,但它错过了弱 5 {\displaystyle 5} dB目标。


相关

  • 解剖学治疗学及化学分类系统解剖学治疗学及化学分类系统(英语:Anatomical Therapeutic Chemical Classification System, ATC),是世界卫生组织对药品的官方分类系统。ATC系统由世界卫生组织药物统计方法整
  • 安东尼·R·亨特安东尼·雷克斯·亨特(英语:Anthony Rex Hunter,1943年8月23日-),英裔美国生物学家,索尔克生物研究所和美国加州大学圣地亚哥分校生物学教授。 他于2018年荣获唐奖生技医药奖。他从
  • 异针蚁亚科异针蚁亚科(Heteroponerinae)隶属于蚁科针蚁形态亚科群,下含1族3属,该亚科是 Barry Bolton 于2003从针蚁亚科分出的六亚科之一。
  • 波罗提木叉波罗提木叉(梵语:प्रतिमोक्ष,转写:prātimokṣa;巴利语: Pātimokkha),佛教术语,又作波罗底木叉、般喇底木叉等。意译为随顺解脱、处处解脱、别别解脱、别解脱、最胜、无
  • 王志涛王志涛(1937年-2009年5月27日),原名王之涛,河北沧州人,回族,相声演员。1937年出生于丹东市,15岁到沈阳铁厂当学徒。1956年参加沈阳市总工会业余艺术团。1962年进入沈阳艺术团,杨海荃
  • 伊莎贝尔·哈克伊莎贝尔·哈克(土耳其语:Isabelle Haak,1999年7月11日-),瑞典女子排球运动员,司职接应二传手。现时效力于土超豪门球队瓦基弗银行女排俱乐部。哈克在2014年开始成为瑞典国家女子排
  • 钱仪吉钱仪吉(1783年-1850年),初名逵吉,字蔼人,号衎石,又号新梧。浙江嘉兴人,清朝政治人物,进士出身。生于清高宗乾隆四十八年(1783年)自幼与从弟钱泰吉以学行相磨,号称“嘉兴二石”。嘉庆十三
  • 天主教埃乌克教区天主教埃乌克教区(拉丁语:Dioecesis Liccanensis;波兰语:Diecezja ełcka)是波兰一个罗马天主教教区。教座位于埃乌克,属瓦尔米亚总教区。教区于1992年3月25日成立。2011年,教区在
  • 挑战者号 (电影)《挑战者号》()是一部讲述理查德·费曼调查挑战者号航天飞机灾难的电影。菲利普·考夫曼担任该片导演,大卫·斯特雷泽恩在片中扮演费曼博士。影片原计划在2007年戛纳电影节首映
  • 赵贤荣赵贤荣(朝鲜语:조현영 ,英语:Cho Hyun Young,1991年8月11日-),艺名贤荣(朝鲜语:현영 ,英语:Hyun Young),韩国女艺人,曾错译为赵玹容、赵贤英、赵玹英,作曲人身份的笔名为“Heidi”,为2009年