迭代稀疏渐近最小方差算法

✍ dations ◷ 2024-12-23 16:46:34 #医学成像,信号处理,断层扫描,估计理论,电信理论,滤波器理论

迭代稀疏渐近最小方差算法是用于信号处理中的谱估计和到达方向(DOA)估计的无参数超分辨率算法。 这个名称是为了强调渐近最小方差(AMV)标准的创造基础。 它是在恶劣环境下恢复多个高相关源的幅度和频率特性的有力工具,例如有限数量的快照,低信噪比。 它可以用于合成孔径雷达。

迭代稀疏渐近最小方差算法是一种基于压缩感知的超高分辨率成像程式, 可以用于合成孔径雷达成像, 信号处理, 核磁共振成像等医学影像领域。

SAMV算法的公式在DOA估计的背景下作为反问题给出。假设 M {\displaystyle M} -元素 均匀线性阵列(ULA)分别接收从位于 θ = { θ a , , θ K } {\displaystyle \mathbf {\theta } =\{\theta _{a},\ldots ,\theta _{K}\}} 位置发出的 K {\displaystyle K} 窄带信号。 ULA中的传感器在特定时间累积 N {\displaystyle N} 快照。 M × 1 {\displaystyle M\times 1} 维快照向量是

其中 A = {\displaystyle \mathbf {A} =} 是转向矩阵, x ( n ) = T {\displaystyle {\bf {x}}(n)=^{T}} 包含源波形, 和 e ( n ) {\displaystyle {\bf {e}}(n)} 是噪音词。假设 E ( e ( n ) e H ( n ¯ ) ) = σ I M δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {e}}(n){\bf {e}}^{H}({\bar {n}})\right)=\sigma {\bf {I}}_{M}\delta _{n,{\bar {n}}}} , δ n , n ¯ {\displaystyle \delta _{n,{\bar {n}}}} 是 Dirac delta 函数 并且它仅等于1,唯一存在 n = n ¯ {\displaystyle n={\bar {n}}} 否则为0。并且假设 e ( n ) {\displaystyle {\bf {e}}(n)} and x ( n ) {\displaystyle {\bf {x}}(n)} 是独立的,而 E ( x ( n ) x H ( n ¯ ) ) = P δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {x}}(n){\bf {x}}^{H}({\bar {n}})\right)={\bf {P}}\delta _{n,{\bar {n}}}} , where P = Diag ( p 1 , , p K ) {\displaystyle {\bf {P}}=\operatorname {Diag} ({p_{1},\ldots ,p_{K}})} . Let p {\displaystyle {\bf {p}}} 是包含未知信号功率和噪声方差的向量, p = T {\displaystyle {\bf {p}}=^{T}} .

y ( n ) {\displaystyle {\bf {y}}(n)} 的协方差矩阵,其中有关 p {\displaystyle {\boldsymbol {\bf {p}}}} 的是

该协方差矩阵可以通过样本协方差矩阵进行传统估计 R N = Y Y H / N {\displaystyle {\bf {R}}_{N}={\bf {Y}}{\bf {Y}}^{H}/N} ,其中 Y = {\displaystyle {\bf {Y}}=} 。将向量化运算符应用于矩阵 R {\displaystyle {\bf {R}}} 后,获取的向量 r ( p ) = vec ( R ) {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})} 与未知参数线性相关 p {\displaystyle {\boldsymbol {\bf {p}}}}

r ( p ) = vec ( R ) = S p {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})={\bf {S}}{\boldsymbol {\bf {p}}}} ,

其中 S = {\displaystyle {\bf {S}}=} , S 1 = {\displaystyle {\bf {S}}_{1}=} , a ¯ k = a k a k {\displaystyle {\bar {\bf {a}}}_{k}={\bf {a}}_{k}^{*}\otimes {\bf {a}}_{k}} , k = 1 , , K {\displaystyle k=1,\ldots ,K} , 和使 a ¯ K + 1 = vec ( I ) {\displaystyle {\bar {\bf {a}}}_{K+1}=\operatorname {vec} ({\bf {I}})} .

要从统计的 r N {\displaystyle {\bf {r}}_{N}} 去估算 p {\displaystyle {\boldsymbol {\bf {p}}}} ,我们基于渐近最小方差准则开发了一系列迭代SAMV方法。从开始,从协方差矩阵 Cov p Alg {\displaystyle \operatorname {Cov} _{\boldsymbol {p}}^{\operatorname {Alg} }} 的任意一致的估计值 p {\displaystyle {\boldsymbol {p}}} ,基于二阶统计值 r N {\displaystyle {\bf {r}}_{N}} ,以实数对称-正定矩阵为界

其中 S d = d r ( p ) / d p {\displaystyle {\bf {S}}_{d}={\rm {d}}{\bf {r}}({\boldsymbol {p}})/{\rm {d}}{\boldsymbol {p}}} 。此外,这个下界是通过最小化得到的 p ^ {\displaystyle {\hat {\bf {p}}}} 的渐近分布的协方差矩阵得到的。 ,

其中 f ( p ) = H C r 1 . {\displaystyle f({\boldsymbol {p}})=^{H}{\bf {C}}_{r}^{-1}.}

因此,可以迭代地获 p {\displaystyle {\boldsymbol {\bf {p}}}} 的估计值。 { p ^ k } k = 1 K {\displaystyle \{{\hat {p}}_{k}\}_{k=1}^{K}} 和最小化 f ( p ) {\displaystyle f({\boldsymbol {p}})} σ ^ {\displaystyle {\hat {\sigma }}} 可借由以下计算获得。

假设 p ^ k ( i ) {\displaystyle {\hat {p}}_{k}^{(i)}} σ ^ ( i ) {\displaystyle {\hat {\sigma }}^{(i)}} 在第 i {\displaystyle i} 迭代中已被估算到某种程度, 第 ( i + 1 ) {\displaystyle (i+1)} 迭代可以被精简成,

其中 R {\displaystyle {\bf {R}}} 的估计值在第 i {\displaystyle i} 迭代是 R ( i ) = A P ( i ) A H + σ ^ ( i ) I {\displaystyle {\bf {R}}^{(i)}={\bf {A}}{\bf {P}}^{(i)}{\bf {A}}^{H}+{\hat {\sigma }}^{(i)}{\bf {I}}} with P ( i ) = Diag ( p ^ 1 ( i ) , , p ^ K ( i ) ) {\displaystyle {\bf {P}}^{(i)}=\operatorname {Diag} ({\hat {p}}_{1}^{(i)},\ldots ,{\hat {p}}_{K}^{(i)})} .

基于大多数压缩感知的源定位技术的分辨率受到覆盖位置参数空间的方向网格的精细度的限制。 在稀疏信号恢复模型中,真值信号的稀疏性 x ( n ) {\displaystyle \mathbf {x} (n)} 取决于超完备字典 A {\displaystyle {\bf {A}}} 中相邻元素之间的距离因此, 会出现选择最佳超完备字典的难度。计算复杂度与方向网格的精细度成正比,高密度网格在计算上不实用。为了克服网格强加的分辨率限制,提出了无网格SAMV-SML(迭代稀疏渐近最小方差 - 随机最大似然, 它借由迭代的最小化随机最大似然估计的消耗函数,相对于单一纯数 θ k {\displaystyle \theta _{k}} ,改进了位置估计 θ = ( θ 1 , , θ K ) T {\displaystyle {\boldsymbol {\bf {\theta }}}=(\theta _{1},\ldots ,\theta _{K})^{T}}

在 SISO 雷达 / 声纳 距离 - 多普勒成像问题中使用SAMV算法的典型应用。该成像问题是单快照应用,并且包括与单快照估计兼容的算法,即匹配滤波器(MF,类似于周期图或反投影,这通常被有效地实现为快速傅里叶变换(FFT)),IAA 和SAMV算法的变体(SAMV-0)。 模拟条件与之相同: 一个 30 {\displaystyle 30} -元素的多项 pulse compression使用P3代码相同作为发射脉冲,模拟总共九个运动目标。在所有移动目标中,三个是 5 {\displaystyle 5} dB功率,其余六个是 25 {\displaystyle 25} dB功率。假设接收信号被 0 {\displaystyle 0} dB功率的均匀高斯白噪声污染。

匹配滤波器检测结果在多普勒和范围域都受到严重的拖尾和光谱泄漏影响,因此无法区分 5 {\displaystyle 5} dB目标。相反,IAA算法提供增强的成像结果,具有可观察的目标范围估计和多普勒频率。 SAMV-0方法提供高度稀疏的结果并完全消除拖尾效应,但它错过了弱 5 {\displaystyle 5} dB目标。


相关

  • 黇鹿Cervus dama Linnaeus, 1758黇鹿(tiānlù)(学名:Dama dama)是鹿科的一种反刍动物,原先仅分布于欧洲地区,之后被陆续引进至安提瓜和巴布达、阿根廷、南非、比奥科岛、圣多美、马
  • Anthozoa珊瑚纲(学名:Anthozoa)是刺胞动物门的一个纲。例如海葵、石珊瑚、红珊瑚和已经绝灭的四射珊瑚、横板珊瑚等,全为海生。
  • 氢氧混合气氢氧是氢气(H2)和氧气(O2)按2:1摩尔比例混合的混合物,这个比例和水中氢和氧的比例相同。这气体混合物是用于制作耐火材料的火炬上,而且是最初用作焊接的气体混合物。在实际操作中
  • 各国执政党列表索引 国防预算 石油储量 军事(武装部队) 死刑 国债 生育率 最高点 官方语言 地理 政体 面积 代码 陆地面积 人口 人口密度 国内生产总值 国徽 国旗 国歌 国家格言 首都 城市
  • 比莉·洛尔德比莉·凯瑟琳·洛尔德(英语:Billie Catherine Lourd,1992年7月17日-),美国女演员。知名作品为Fox频道播出的《尖叫女王》,饰演香奈儿3号。洛尔德诞生于美国加利福尼亚州洛杉矶。洛
  • 大地 (杂志)— 期数Vol 12 No 6大地(Mother Earth)为一个无政府主义期刊,它称自己为一份“投注于社会科学与文学的月刊”,由艾玛·高德曼编辑。知名的无政府主义者亚历山大·贝克曼在1907年
  • 浮浪幼虫浮浪幼虫是一种自由生活,长有纤毛,两侧对称的幼虫。在所有的情况下,浮浪幼虫都是来自腔肠动物水母体世代所产生的受精卵合子,如钵水母纲、部分水螅纲、和一部分花虫纲。依据物种
  • SandboxieSandboxie是一个沙盒计算机程序,原先由Ronen Tzur开发,后被Invincea收购。Sandboxie可以在32位及64位的、基于Windows NT的系统上运行(如Windows XP、Windows 7等)。它创造了一
  • 女左膳 濡燕独臂斩《女左膳 濡燕独臂斩》(女左膳 濡れ燕片手斬り)为于1969年上映的日本时代剧电影,由大映制作发行,是将知名小说剑客丹下左膳女性化的改编电影。
  • 奥斯卡·戈雷斯奥斯卡·迈克尔·戈雷斯(英语:Oscar Michael Görres,1986年3月20日-),并也以OzGo知名,是瑞典唱片制作人、词曲作家和声乐人。他知名于帮玛琳娜、泰勒·斯威夫特、魔力红、DNCE、布