迭代稀疏渐近最小方差算法

✍ dations ◷ 2025-08-16 18:07:55 #医学成像,信号处理,断层扫描,估计理论,电信理论,滤波器理论

迭代稀疏渐近最小方差算法是用于信号处理中的谱估计和到达方向(DOA)估计的无参数超分辨率算法。 这个名称是为了强调渐近最小方差(AMV)标准的创造基础。 它是在恶劣环境下恢复多个高相关源的幅度和频率特性的有力工具,例如有限数量的快照,低信噪比。 它可以用于合成孔径雷达。

迭代稀疏渐近最小方差算法是一种基于压缩感知的超高分辨率成像程式, 可以用于合成孔径雷达成像, 信号处理, 核磁共振成像等医学影像领域。

SAMV算法的公式在DOA估计的背景下作为反问题给出。假设 M {\displaystyle M} -元素 均匀线性阵列(ULA)分别接收从位于 θ = { θ a , , θ K } {\displaystyle \mathbf {\theta } =\{\theta _{a},\ldots ,\theta _{K}\}} 位置发出的 K {\displaystyle K} 窄带信号。 ULA中的传感器在特定时间累积 N {\displaystyle N} 快照。 M × 1 {\displaystyle M\times 1} 维快照向量是

其中 A = {\displaystyle \mathbf {A} =} 是转向矩阵, x ( n ) = T {\displaystyle {\bf {x}}(n)=^{T}} 包含源波形, 和 e ( n ) {\displaystyle {\bf {e}}(n)} 是噪音词。假设 E ( e ( n ) e H ( n ¯ ) ) = σ I M δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {e}}(n){\bf {e}}^{H}({\bar {n}})\right)=\sigma {\bf {I}}_{M}\delta _{n,{\bar {n}}}} , δ n , n ¯ {\displaystyle \delta _{n,{\bar {n}}}} 是 Dirac delta 函数 并且它仅等于1,唯一存在 n = n ¯ {\displaystyle n={\bar {n}}} 否则为0。并且假设 e ( n ) {\displaystyle {\bf {e}}(n)} and x ( n ) {\displaystyle {\bf {x}}(n)} 是独立的,而 E ( x ( n ) x H ( n ¯ ) ) = P δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {x}}(n){\bf {x}}^{H}({\bar {n}})\right)={\bf {P}}\delta _{n,{\bar {n}}}} , where P = Diag ( p 1 , , p K ) {\displaystyle {\bf {P}}=\operatorname {Diag} ({p_{1},\ldots ,p_{K}})} . Let p {\displaystyle {\bf {p}}} 是包含未知信号功率和噪声方差的向量, p = T {\displaystyle {\bf {p}}=^{T}} .

y ( n ) {\displaystyle {\bf {y}}(n)} 的协方差矩阵,其中有关 p {\displaystyle {\boldsymbol {\bf {p}}}} 的是

该协方差矩阵可以通过样本协方差矩阵进行传统估计 R N = Y Y H / N {\displaystyle {\bf {R}}_{N}={\bf {Y}}{\bf {Y}}^{H}/N} ,其中 Y = {\displaystyle {\bf {Y}}=} 。将向量化运算符应用于矩阵 R {\displaystyle {\bf {R}}} 后,获取的向量 r ( p ) = vec ( R ) {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})} 与未知参数线性相关 p {\displaystyle {\boldsymbol {\bf {p}}}}

r ( p ) = vec ( R ) = S p {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})={\bf {S}}{\boldsymbol {\bf {p}}}} ,

其中 S = {\displaystyle {\bf {S}}=} , S 1 = {\displaystyle {\bf {S}}_{1}=} , a ¯ k = a k a k {\displaystyle {\bar {\bf {a}}}_{k}={\bf {a}}_{k}^{*}\otimes {\bf {a}}_{k}} , k = 1 , , K {\displaystyle k=1,\ldots ,K} , 和使 a ¯ K + 1 = vec ( I ) {\displaystyle {\bar {\bf {a}}}_{K+1}=\operatorname {vec} ({\bf {I}})} .

要从统计的 r N {\displaystyle {\bf {r}}_{N}} 去估算 p {\displaystyle {\boldsymbol {\bf {p}}}} ,我们基于渐近最小方差准则开发了一系列迭代SAMV方法。从开始,从协方差矩阵 Cov p Alg {\displaystyle \operatorname {Cov} _{\boldsymbol {p}}^{\operatorname {Alg} }} 的任意一致的估计值 p {\displaystyle {\boldsymbol {p}}} ,基于二阶统计值 r N {\displaystyle {\bf {r}}_{N}} ,以实数对称-正定矩阵为界

其中 S d = d r ( p ) / d p {\displaystyle {\bf {S}}_{d}={\rm {d}}{\bf {r}}({\boldsymbol {p}})/{\rm {d}}{\boldsymbol {p}}} 。此外,这个下界是通过最小化得到的 p ^ {\displaystyle {\hat {\bf {p}}}} 的渐近分布的协方差矩阵得到的。 ,

其中 f ( p ) = H C r 1 . {\displaystyle f({\boldsymbol {p}})=^{H}{\bf {C}}_{r}^{-1}.}

因此,可以迭代地获 p {\displaystyle {\boldsymbol {\bf {p}}}} 的估计值。 { p ^ k } k = 1 K {\displaystyle \{{\hat {p}}_{k}\}_{k=1}^{K}} 和最小化 f ( p ) {\displaystyle f({\boldsymbol {p}})} σ ^ {\displaystyle {\hat {\sigma }}} 可借由以下计算获得。

假设 p ^ k ( i ) {\displaystyle {\hat {p}}_{k}^{(i)}} σ ^ ( i ) {\displaystyle {\hat {\sigma }}^{(i)}} 在第 i {\displaystyle i} 迭代中已被估算到某种程度, 第 ( i + 1 ) {\displaystyle (i+1)} 迭代可以被精简成,

其中 R {\displaystyle {\bf {R}}} 的估计值在第 i {\displaystyle i} 迭代是 R ( i ) = A P ( i ) A H + σ ^ ( i ) I {\displaystyle {\bf {R}}^{(i)}={\bf {A}}{\bf {P}}^{(i)}{\bf {A}}^{H}+{\hat {\sigma }}^{(i)}{\bf {I}}} with P ( i ) = Diag ( p ^ 1 ( i ) , , p ^ K ( i ) ) {\displaystyle {\bf {P}}^{(i)}=\operatorname {Diag} ({\hat {p}}_{1}^{(i)},\ldots ,{\hat {p}}_{K}^{(i)})} .

基于大多数压缩感知的源定位技术的分辨率受到覆盖位置参数空间的方向网格的精细度的限制。 在稀疏信号恢复模型中,真值信号的稀疏性 x ( n ) {\displaystyle \mathbf {x} (n)} 取决于超完备字典 A {\displaystyle {\bf {A}}} 中相邻元素之间的距离因此, 会出现选择最佳超完备字典的难度。计算复杂度与方向网格的精细度成正比,高密度网格在计算上不实用。为了克服网格强加的分辨率限制,提出了无网格SAMV-SML(迭代稀疏渐近最小方差 - 随机最大似然, 它借由迭代的最小化随机最大似然估计的消耗函数,相对于单一纯数 θ k {\displaystyle \theta _{k}} ,改进了位置估计 θ = ( θ 1 , , θ K ) T {\displaystyle {\boldsymbol {\bf {\theta }}}=(\theta _{1},\ldots ,\theta _{K})^{T}}

在 SISO 雷达 / 声纳 距离 - 多普勒成像问题中使用SAMV算法的典型应用。该成像问题是单快照应用,并且包括与单快照估计兼容的算法,即匹配滤波器(MF,类似于周期图或反投影,这通常被有效地实现为快速傅里叶变换(FFT)),IAA 和SAMV算法的变体(SAMV-0)。 模拟条件与之相同: 一个 30 {\displaystyle 30} -元素的多项 pulse compression使用P3代码相同作为发射脉冲,模拟总共九个运动目标。在所有移动目标中,三个是 5 {\displaystyle 5} dB功率,其余六个是 25 {\displaystyle 25} dB功率。假设接收信号被 0 {\displaystyle 0} dB功率的均匀高斯白噪声污染。

匹配滤波器检测结果在多普勒和范围域都受到严重的拖尾和光谱泄漏影响,因此无法区分 5 {\displaystyle 5} dB目标。相反,IAA算法提供增强的成像结果,具有可观察的目标范围估计和多普勒频率。 SAMV-0方法提供高度稀疏的结果并完全消除拖尾效应,但它错过了弱 5 {\displaystyle 5} dB目标。


相关

  • 四色视觉四色视觉(英语:Tetrachromacy)是指生物体拥有四种独立的感光通道,或指眼球中有四种感色的视锥细胞(较人类多出感应紫外线的锥状细胞),大部分鸟类具有此种特征。一般人类所绘制出的
  • 刁马恩岛刁曼岛(马来语:Pulau Tioman),为马来西亚半岛东岸外32千米的一个小型火山岛,属马来西亚彭亨州云冰县管辖,面积约133平方千米,也是县内的一个巫金(区)。当地居民人烟稀少,仅3,000人左右
  • 阿尔弗雷德·德·缪塞阿尔弗雷德·德·缪塞(法语:Alfred de Musset,全名:Alfred Louis Charles de Musset-Pathay,1810年12月11日-1857年5月2日)是法国贵族、剧作家、诗人、小说作家。阿尔弗雷德·德·
  • 丽贝卡·费尔顿丽贝卡·安·拉蒂默·费尔顿(英语:Rebecca Ann Latimer Felton,1835年6月10日-1930年1月24日),美国作家、教师、改革家,美国历史上第一位女参议员,但仅做了一天,成为美国历史上任期最
  • 曼妥思曼妥思(Mentos),是一种在全球超过130个国家销售的薄荷糖品牌,由欧洲糖果集团不凡帝范梅勒生产。最初于1948年在荷兰问世。通常都是以包含14颗糖的条状包形式和数十颗糖的罐装形
  • 星甲实义星甲実义(ほしかぶと さねよし,本名:中尾実義,1902年7月21日-1944年9月23日),昭和初年的日本相扑力士,9代目井筒亲方,井筒部屋所属。
  • 富流感富流感(英语:affluenza,来自富裕“affluence”和流行性感冒“influenza”,又译富裕流感、富裕病、富贵病)是用于批评消费主义的术语。一本名为《富流感》的书将它定义为“痛苦的,
  • 牛津大学沃弗森学院沃弗森学院(Wolfson College)是英国牛津大学下的一个学院,位于牛津北部查尔维河(英语:River Cherwell)沿岸,只接受研究生入学,是牛津大学最国际化的学院,学员来自世界各地75个国家。
  • 小行星6672小行星6672(6672 Corot)是一颗绕太阳运转的小行星,为主小行星带小行星。该小行星于1971年3月24日发现。小行星6672的轨道半长轴为2.4119716 UA,离心率为0.214。
  • 比夏纳比夏纳(Bhisiana),是印度旁遮普邦珀丁达县的一个城镇。总人口4775(2001年)。该地2001年总人口4775人,其中男性2835人,女性1940人;0—6岁人口723人,其中男412人,女311人;识字率74.55%,其