迭代稀疏渐近最小方差算法

✍ dations ◷ 2025-11-19 11:55:45 #医学成像,信号处理,断层扫描,估计理论,电信理论,滤波器理论

迭代稀疏渐近最小方差算法是用于信号处理中的谱估计和到达方向(DOA)估计的无参数超分辨率算法。 这个名称是为了强调渐近最小方差(AMV)标准的创造基础。 它是在恶劣环境下恢复多个高相关源的幅度和频率特性的有力工具,例如有限数量的快照,低信噪比。 它可以用于合成孔径雷达。

迭代稀疏渐近最小方差算法是一种基于压缩感知的超高分辨率成像程式, 可以用于合成孔径雷达成像, 信号处理, 核磁共振成像等医学影像领域。

SAMV算法的公式在DOA估计的背景下作为反问题给出。假设 M {\displaystyle M} -元素 均匀线性阵列(ULA)分别接收从位于 θ = { θ a , , θ K } {\displaystyle \mathbf {\theta } =\{\theta _{a},\ldots ,\theta _{K}\}} 位置发出的 K {\displaystyle K} 窄带信号。 ULA中的传感器在特定时间累积 N {\displaystyle N} 快照。 M × 1 {\displaystyle M\times 1} 维快照向量是

其中 A = {\displaystyle \mathbf {A} =} 是转向矩阵, x ( n ) = T {\displaystyle {\bf {x}}(n)=^{T}} 包含源波形, 和 e ( n ) {\displaystyle {\bf {e}}(n)} 是噪音词。假设 E ( e ( n ) e H ( n ¯ ) ) = σ I M δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {e}}(n){\bf {e}}^{H}({\bar {n}})\right)=\sigma {\bf {I}}_{M}\delta _{n,{\bar {n}}}} , δ n , n ¯ {\displaystyle \delta _{n,{\bar {n}}}} 是 Dirac delta 函数 并且它仅等于1,唯一存在 n = n ¯ {\displaystyle n={\bar {n}}} 否则为0。并且假设 e ( n ) {\displaystyle {\bf {e}}(n)} and x ( n ) {\displaystyle {\bf {x}}(n)} 是独立的,而 E ( x ( n ) x H ( n ¯ ) ) = P δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {x}}(n){\bf {x}}^{H}({\bar {n}})\right)={\bf {P}}\delta _{n,{\bar {n}}}} , where P = Diag ( p 1 , , p K ) {\displaystyle {\bf {P}}=\operatorname {Diag} ({p_{1},\ldots ,p_{K}})} . Let p {\displaystyle {\bf {p}}} 是包含未知信号功率和噪声方差的向量, p = T {\displaystyle {\bf {p}}=^{T}} .

y ( n ) {\displaystyle {\bf {y}}(n)} 的协方差矩阵,其中有关 p {\displaystyle {\boldsymbol {\bf {p}}}} 的是

该协方差矩阵可以通过样本协方差矩阵进行传统估计 R N = Y Y H / N {\displaystyle {\bf {R}}_{N}={\bf {Y}}{\bf {Y}}^{H}/N} ,其中 Y = {\displaystyle {\bf {Y}}=} 。将向量化运算符应用于矩阵 R {\displaystyle {\bf {R}}} 后,获取的向量 r ( p ) = vec ( R ) {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})} 与未知参数线性相关 p {\displaystyle {\boldsymbol {\bf {p}}}}

r ( p ) = vec ( R ) = S p {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})={\bf {S}}{\boldsymbol {\bf {p}}}} ,

其中 S = {\displaystyle {\bf {S}}=} , S 1 = {\displaystyle {\bf {S}}_{1}=} , a ¯ k = a k a k {\displaystyle {\bar {\bf {a}}}_{k}={\bf {a}}_{k}^{*}\otimes {\bf {a}}_{k}} , k = 1 , , K {\displaystyle k=1,\ldots ,K} , 和使 a ¯ K + 1 = vec ( I ) {\displaystyle {\bar {\bf {a}}}_{K+1}=\operatorname {vec} ({\bf {I}})} .

要从统计的 r N {\displaystyle {\bf {r}}_{N}} 去估算 p {\displaystyle {\boldsymbol {\bf {p}}}} ,我们基于渐近最小方差准则开发了一系列迭代SAMV方法。从开始,从协方差矩阵 Cov p Alg {\displaystyle \operatorname {Cov} _{\boldsymbol {p}}^{\operatorname {Alg} }} 的任意一致的估计值 p {\displaystyle {\boldsymbol {p}}} ,基于二阶统计值 r N {\displaystyle {\bf {r}}_{N}} ,以实数对称-正定矩阵为界

其中 S d = d r ( p ) / d p {\displaystyle {\bf {S}}_{d}={\rm {d}}{\bf {r}}({\boldsymbol {p}})/{\rm {d}}{\boldsymbol {p}}} 。此外,这个下界是通过最小化得到的 p ^ {\displaystyle {\hat {\bf {p}}}} 的渐近分布的协方差矩阵得到的。 ,

其中 f ( p ) = H C r 1 . {\displaystyle f({\boldsymbol {p}})=^{H}{\bf {C}}_{r}^{-1}.}

因此,可以迭代地获 p {\displaystyle {\boldsymbol {\bf {p}}}} 的估计值。 { p ^ k } k = 1 K {\displaystyle \{{\hat {p}}_{k}\}_{k=1}^{K}} 和最小化 f ( p ) {\displaystyle f({\boldsymbol {p}})} σ ^ {\displaystyle {\hat {\sigma }}} 可借由以下计算获得。

假设 p ^ k ( i ) {\displaystyle {\hat {p}}_{k}^{(i)}} σ ^ ( i ) {\displaystyle {\hat {\sigma }}^{(i)}} 在第 i {\displaystyle i} 迭代中已被估算到某种程度, 第 ( i + 1 ) {\displaystyle (i+1)} 迭代可以被精简成,

其中 R {\displaystyle {\bf {R}}} 的估计值在第 i {\displaystyle i} 迭代是 R ( i ) = A P ( i ) A H + σ ^ ( i ) I {\displaystyle {\bf {R}}^{(i)}={\bf {A}}{\bf {P}}^{(i)}{\bf {A}}^{H}+{\hat {\sigma }}^{(i)}{\bf {I}}} with P ( i ) = Diag ( p ^ 1 ( i ) , , p ^ K ( i ) ) {\displaystyle {\bf {P}}^{(i)}=\operatorname {Diag} ({\hat {p}}_{1}^{(i)},\ldots ,{\hat {p}}_{K}^{(i)})} .

基于大多数压缩感知的源定位技术的分辨率受到覆盖位置参数空间的方向网格的精细度的限制。 在稀疏信号恢复模型中,真值信号的稀疏性 x ( n ) {\displaystyle \mathbf {x} (n)} 取决于超完备字典 A {\displaystyle {\bf {A}}} 中相邻元素之间的距离因此, 会出现选择最佳超完备字典的难度。计算复杂度与方向网格的精细度成正比,高密度网格在计算上不实用。为了克服网格强加的分辨率限制,提出了无网格SAMV-SML(迭代稀疏渐近最小方差 - 随机最大似然, 它借由迭代的最小化随机最大似然估计的消耗函数,相对于单一纯数 θ k {\displaystyle \theta _{k}} ,改进了位置估计 θ = ( θ 1 , , θ K ) T {\displaystyle {\boldsymbol {\bf {\theta }}}=(\theta _{1},\ldots ,\theta _{K})^{T}}

在 SISO 雷达 / 声纳 距离 - 多普勒成像问题中使用SAMV算法的典型应用。该成像问题是单快照应用,并且包括与单快照估计兼容的算法,即匹配滤波器(MF,类似于周期图或反投影,这通常被有效地实现为快速傅里叶变换(FFT)),IAA 和SAMV算法的变体(SAMV-0)。 模拟条件与之相同: 一个 30 {\displaystyle 30} -元素的多项 pulse compression使用P3代码相同作为发射脉冲,模拟总共九个运动目标。在所有移动目标中,三个是 5 {\displaystyle 5} dB功率,其余六个是 25 {\displaystyle 25} dB功率。假设接收信号被 0 {\displaystyle 0} dB功率的均匀高斯白噪声污染。

匹配滤波器检测结果在多普勒和范围域都受到严重的拖尾和光谱泄漏影响,因此无法区分 5 {\displaystyle 5} dB目标。相反,IAA算法提供增强的成像结果,具有可观察的目标范围估计和多普勒频率。 SAMV-0方法提供高度稀疏的结果并完全消除拖尾效应,但它错过了弱 5 {\displaystyle 5} dB目标。


相关

  • 杀婴在生物学和社会学上来说,杀婴是某一物种意图令自己同种婴儿死亡的行动。在许多过去的社会里特定形式的杀婴被认为是适宜的,但大多数的现代社会却认为不道德或犯罪。虽然如此,这
  • 菌绿素菌绿素,或者称细菌叶绿素(英文bacteriochlorophyll,简写BChl)是存在于多种细菌中的光合色素。它们和植物、真核藻类和蓝藻中的叶绿素结构上类似。含有菌绿素的细菌能进行光合作
  • 不丹经济不丹是世界最小及落后的经济体系之一,以农业及林业为主(但由于不丹政府以保护林木为理由,所以不丹的林业规模并不大)。农业及林业提供了90%不丹人口的生计,并且占不丹国民生产毛
  • 233<< 230231232233234235236237238239>> 233在十进制中,是232与234之间的自然数。
  • 尹昌范尹昌范(韩语:윤창범),韩国电视剧导演。
  • 黄胜雄黄胜雄(1939年3月23日-),出生于今台湾南投县草屯镇。台湾著名医师、公益工作领袖及基督教传道人。黄胜雄是享誉美国的脑神经外科权威,曾是美国雷根总统随行的指定医师,被认为是医
  • 肺炎肺炎(pneumonia),是指肺部出现发炎的症状,主要是肺泡受到影响。肺炎常见的症状包括有痰的咳嗽、胸痛、发热及呼吸困难。症状可能由轻微到严重不一。特别高龄的长者或新生儿可能
  • 三游洞摩崖三游洞摩崖,简称三游洞,位于湖北省宜昌市西北7公里的长江边的山崖上,位于西陵峡峡口处。2006年5月25日,宜昌市三游洞摩崖被列入第六批全国重点文物保护单位。三游洞在唐朝以前还
  • 青木智美青木智美(日语:青木 智美/あおき ともみ ,1994年10月25日-)出生于神奈川县,是一名日本女子游泳运动员,擅长自由泳,曾就读于法政大学社会学部,大学毕业后成为伙伴日生同和损害保险俱乐
  • 李宪 (北魏)李宪(470年-527年),字仲轨,赵国柏仁县(今河北省邢台市隆尧县)人,出自赵郡李氏东祖,北魏官员。李宪的父亲李式被使者逮捕时,西兖州的官吏百姓送行到黄河边上。当时李宪刚出生满月,李式大