首页 >
运算符
✍ dations ◷ 2025-08-29 19:21:10 #运算符
算子(英语:Operator)是将一个元素在向量空间(或模)中转换为另一个元素的映射。 算子对于线性代数和泛函分析都至关重要,它在纯数学和应用数学的许多其他领域中都有应用。 例如,在经典力学中,导数的使用无处不在,而在量子力学中,可观察量由埃尔米特算子表示。 各种算子可以具有包括线性、连续性和有界性等的重要性质。设U、V是两个向量空间。 从U到V的任意映射被称为算子。 令V是域K上的向量空间。我们可以定义包含所有从U到V算子的集合上的向量空间结构(A和B是算子):对所有A, B: U→V,x
∈
{displaystyle in }
U和α
∈
{displaystyle in }
K。从一个向量空间到自身的算子构成一个辛结合代数:单位元是恒等映射(通常记为E、I或id)。令U和V是同一有序域(例如
R
{displaystyle mathbf {R} }
)上的两个赋范向量空间。从U到V的线性算子被称为有界,如果存在C>0满足对所有x
∈
{displaystyle in }
U。有界算子构成一个向量空间。在这个向量空间上,我们可以引入一个与U和V的范数相容的范数:对于从U到自身的算子有任何具有这一性质的辛赋范代数被称为Banach代数。 可以将谱理论推广到这样的代数上。 C*-代数是具有一些附加结构的Banach代数,在量子力学中起重要作用。泛函是将向量空间映射到其底域的算子。 广义函数理论和变分法是泛函的重要应用。 两者对理论物理都非常重要。线性算子是最常见的算子。设U和V是域K上的向量空间。算子A:U→V被称为线性,如果对所有x、y
∈
{displaystyle in }
U和α、β
∈
{displaystyle in }
K。线性算子的重要性在于它是向量空间之间的态射。在有限维情形下,线性算子可以以下面的方式由矩阵表示。 设
K
{displaystyle K}
是一个域,
U
{displaystyle U}
和
V
{displaystyle V}
是
K
{displaystyle K}
上有限维向量空间。选择一组基
u
1
,
…
,
u
n
{displaystyle mathbf {u} _{1},ldots ,mathbf {u} _{n}}
U
{displaystyle U}
上和一组基
v
1
,
…
,
v
m
{displaystyle mathbf {v} _{1},ldots ,mathbf {v} _{m}}
在
V
{displaystyle V}
上。令
x
=
x
i
u
i
{displaystyle mathbf {x} =x^{i}mathbf {u} _{i}}
为
U
{displaystyle U}
上的任意向量(假设有爱因斯坦求和约定),且有
A
:
U
→
V
{displaystyle A:Uto V}
是线性算子。则有所以有
a
i
j
:=
(
A
u
i
)
j
∈
K
{displaystyle a_{i}^{j}:=(Amathbf {u} _{i})^{j}in K}
是算子
A
{displaystyle A}
在固定基底下的矩阵表示。
a
i
j
{displaystyle a_{i}^{j}}
不依赖于
x
{displaystyle x}
的选取,且有
A
x
=
y
{displaystyle Amathbf {x} =mathbf {y} }
当且仅当
a
i
j
x
i
=
y
j
{displaystyle a_{i}^{j}x^{i}=y^{j}}
。因此在固定基底下的n×m矩阵一一映射到从
U
{displaystyle U}
到
V
{displaystyle V}
的线性算子。与有限维向量空间之间的算子直接相关的重要概念包括秩、行列式、逆算子和特征空间。线性算子在无限维情形也起着重要作用。秩和行列式的概念不能扩展到无限维矩阵。 这就是为什么在无限维情况下研究线性算子(和一般的算子)时采用非常不同的技术的原因。 在无限维情况下的对线性算子的研究被称为泛函分析。实数序列(或更一般地任意向量空间中的向量序列)的空间本身构成无限维向量空间。 最重要的情形是实数或复数序列,这些空间与线性子空间一起被称为序列空间。 这些空间上的算子被称为序列变换。巴拿赫空间上的有界线性算子在标准算子范数意义下构成Banach代数。 Banach代数理论将特征空间理论推广到更一般的谱的概念。在几何中,有时研究向量空间上的附加结构。 在这些研究中,将这些向量空间一一映射到自身的算子非常有用,它们通过构造自然地构成群。例如保持向量空间结构的双射算子正是可逆线性算子。 它们构成了一般线性群。 它们算子加法下不是向量空间,例如, id和-id都是可逆的(双射),但它们的和为0,不可逆。在这样的空间上保持欧几里得度量的算子构成等度群,保持原型不变的子群被称为正交群。正交群中的保角算子构成特殊正交群。概率论中也涉及到算子,如期望、方差、协方差、阶乘等。从泛函分析的角度来说,微积分是研究两个线性算子:微分算子
d
d
t
{displaystyle {frac {mathrm {d} }{mathrm {d} t}}}
和不定积分算子
∫
0
t
{displaystyle int _{0}^{t}}
。傅里叶变换在应用数学特别是物理学和信号处理中都是有用的工具。 它是另一种积分算子; 它的意义主要在于它以一种有效的可逆的方式将一个时域上的函数转换为频域上的函数。 因为是一个可逆变换算子,所以没有信息损失。 在周期函数这一简单情况下,该结果是基于定理任何连续周期函数可以表示为一系列正弦波和余弦波的和:(a0, a1, b1, a2, b2, ...)实际上是无限维向量空间ℓ2的元素,因此傅里叶级数是线性算子。当处理R → C的一般函数时,变换采用积分形式:拉普拉斯变换是另一种积分算子,用于简化求解微分方程的过程。对于f = f(s),拉普拉斯变换定义如下:三个算子是向量微积分的关键:作为从向量微积分算子到物理、工程和张量空间的延伸,梯度、散度和旋度算子也经常与张量微积分相关联。
相关
- 淋巴瘤淋巴瘤(英文:lymphoma)又称淋巴癌,是由淋巴细胞病变造成的血液细胞瘤(英语:blood cell tumors)。有时候这个词汇被用来单指癌症、而不包括良性的肿瘤。症状包括淋巴结肿大 (通常为无
- 稻大鼠稻大鼠(学名:Oryzomys palustris)是北美洲一种半水生的啮齿类。它们主要分布在美国东部及南部,由新泽西州及肯萨斯州南部至科罗拉多州及墨西哥塔毛利帕斯州最东北端。;其分布地以
- 公共行政学公共行政学(Public Administration),又称行政学。主要结合政治学和管理学为其理论基础。简言之,行政即是公务的推行、政府的管理,举凡政府机关或公务机构的业务,如何使之有效的加
- 长春新碱长春新碱(Vincristine),商品名“维克思丁”、“安可平”(Oncovin),又名长春花新碱、新长春碱,医学上简称VCR,是一种由夹竹桃科长春花属植物长春花中提取的一种生物碱。它是一种有丝
- 卡洛·哥尔多尼卡罗·奥斯瓦尔多·哥尔多尼(意大利语:Carlo Osvaldo Goldoni,1707年2月25日-1793年2月6日)是出生于威尼斯共和国的意大利剧作家。他一生创作了大量的剧本,以《一仆二主》、《女店
- 波斯尼亚波斯尼亚常作波斯尼亚和黑塞哥维那的简称。波斯尼亚也可解作:地方:参看:注:波斯尼亚与波斯无直接关系。
- 豚鼠属豚鼠属(学名:Cavia)是啮齿目豚鼠科的一属,原产于南美洲,现有很多种类作为宠物被引入到世界各地。本属包括以下几种:
- 氯化氯化(英语:Chlorination)是水的净化中的一个过程,在这个过程中,氯气被加入水中。被处理后的水能够更有效的预防疾病传染。游泳池中的水也经常是通过氯化消毒。
- 羰基硫羰基硫(化学式:OCS)又称氧硫化碳、硫化羰,通常状态下为有臭鸡蛋气味的无色气体。它是一个结构上与二硫化碳和二氧化碳类似的无机碳化合物,气态的OCS分子为直线型,一个碳原子以两个
- 渚碧礁渚碧礁位于南沙群岛的中业群礁西南部,由天然环礁填海而成的人工岛。目前由中华人民共和国实际控制,行政上隶属于海南省三沙市。2015年开始填海工程,截止2015年6月12日,渚碧礁面