多元微积分

✍ dations ◷ 2025-11-11 23:52:11 #多变量微积分

在微积分学中,多元微积分(也称为多变量微积分,英语:Multivariable calculus,multivariate calculus)是涉及多元函数的微积分学的统称。相较于只有单个变量的一元微积分,多元微积分在函数的求导和积分等运算中含有至少两个变量。例如微分多元函数时,就引申出偏微分、全微分,对多元函数进行积分计算时,又会涉及多重积分。

多元函数的概念很早就出现在物理学中,因为人们常常要研究取决于多个其他变量的物理量。例如托马斯·布拉德华曾试图寻找运动物体的速度、动力和阻力之间的关系。:210不过从十七世纪开始,这个概念有了长足发展。1667年,詹姆斯·格雷果里在 一文中给出了多元函数最早的定义之一:“(多元)函数是由几个量经过一系列代数运算或别的可以想象的运算得到的量。”:216十八世纪,人们发展了基于无穷小量的微积分,,并研究了常微分方程和偏微分方程的解法。那时多元函数的运算与一元函数类似。直到十九世纪末和二十世纪,人们才严格建立起偏导数(包括二阶偏导数)的计算法则。

多元函数是指定义域为 R n {\displaystyle \scriptstyle \mathbb {R} ^{n}} 元组 x = ( x 1 , x 2 , , x n ) {\displaystyle x=(x_{1},x_{2},\dots ,x_{n})} )对应唯一一个值域中的元素,记为 f ( x ) {\displaystyle f(x)} f ( x 1 , x 2 , , x n ) {\displaystyle f(x_{1},x_{2},\dots ,x_{n})} ,如下所示:

如果线性空间 R n {\displaystyle \scriptstyle \mathbb {R} ^{n}} R m {\displaystyle \scriptstyle \mathbb {R} ^{m}} 上赋有范数,就可以研究这种多元函数的连续性和可微性。如果固定除一个变量外的其他变量,多元函数的研究就可归结为值域是 R m {\displaystyle \scriptstyle \mathbb {R} ^{m}} 的函数。如果分别考虑坐标函数的话,甚至可归结为值域是 R {\displaystyle \scriptstyle \mathbb {R} } 的函数。比如,这种函数的导数存在的话,就称为原来多元函数的偏导数。

数学分析中的经典概念可以推广到多元函数,但也要引入线性代数中的概念。

E {\displaystyle E} R n {\displaystyle \scriptstyle \mathbb {R} ^{n}} 中的一个开集, f {\displaystyle f} 是定义在 E {\displaystyle E} 上的函数。给 R n {\displaystyle \scriptstyle \mathbb {R} ^{n}} 赋予一个范数之后,就可以这样定义连续性:对 E {\displaystyle E} 中的每个点 a {\displaystyle a} f {\displaystyle f} a {\displaystyle a} 处连续当且仅当

在多元微积分领域,对函数极限和连续性的研究可导致许多违反直觉的结果。例如,一些二元标量函数,当 x {\displaystyle x} y {\displaystyle y} 沿不同路径(例如直线与抛物线)趋近于极限点时,函数的值不同。:19-22例如,函数

沿任何直线 y = k x {\displaystyle y=kx} 趋近于原点 ( 0 , 0 ) {\displaystyle (0,0)} 时,f趋近于0。然而,当变量x,y沿抛物线 y = x 2 {\displaystyle y=x^{2}} 趋近于原点时,f趋近于0.5。由于沿不同路径取极限时函数值不同,故该函数在原点的极限不存在。

每一个变量的连续不是多元函数连续的充分条件::17-19例如, 含有两个变量的实数函数 f ( x , y ) {\displaystyle f(x,y)} ,对于每一个固定的 y {\displaystyle y} f {\displaystyle f} 关于 x {\displaystyle x} 的函数在其定义域内连续。同样的,对于每一个固定的 x {\displaystyle x} f {\displaystyle f} 关于 y {\displaystyle y} 的函数在其定义域也内连续,但这不能说明原函数连续。

很容易验证,在实数域中,定义函数: f y ( x ) := f ( x , y ) {\displaystyle f_{y}(x):=f(x,y)} ,则对于每一个固定的 y {\displaystyle y} f y ( x ) {\displaystyle f_{y}(x)} R {\displaystyle \mathbb {R} } 上连续。同理,函数 f x {\displaystyle f_{x}} 也是关于 y {\displaystyle y} 的连续函数。然而,函数 f {\displaystyle f} 在原点是不连续的。 考虑序列 f ( 1 n , 1 n ) {\displaystyle f\left({\frac {1}{n}},{\frac {1}{n}}\right)} ( n {\displaystyle n} 为自然数),若在原点连续其结果应为 f ( 0 , 0 ) = 0 {\displaystyle f(0,0)=0} 。然而,通过计算知其在原点的极限为 lim n f ( 1 n , 1 n ) = 1. {\displaystyle \lim _{n\to \infty }f\left({\frac {1}{n}},{\frac {1}{n}}\right)=1.} 。 因此, f {\displaystyle f} 在原点不连续。

偏导数将导数的概念推广到更高维度。一个多变量函数的偏导数是一个相对于一个变量的导数,所有其他变量视作常数,保持不变。:26ff

偏导数可以组合起来,创造出形式更复杂的导数。在向量分析中,Nabla算子( {\displaystyle \nabla } )依据偏导数被用于定义这些概念:梯度,散度,旋度。在含有偏导数的矩阵中,雅可比矩阵可以用来表示任意维空间之间的函数的导数。因此,导数可理解为从函数定义域到函数值域的逐点变化的线性映射。

含有偏导数的微分方程称为偏微分方程或“PDE”。这些方程较只含有一个变量的常微分方程更难解出。:654ff

重积分将积分的概念拓展至任意数量的变量。二重积分和三重积分可用于计算平面和空间中区域的面积和体积。富比尼定理给出了使用逐次积分的方法计算二重积分的条件。:367ff

可以用曲面积分和曲线积分在曲面和曲线等流形上进行积分。

在一元微积分中,微积分基本定理建立了导数与积分的联系。多元微积分中导数与积分之间的联系,体现为矢量微积分的积分定理::543ff

在对多元微积分更深层次的研究中,可以认为以上四条定理是一个更一般的定理的具体表现,即广义斯托克斯定理,后者适用于在流形上对微分形式进行积分。

向量分析研究欧式空间中足够光滑的标量和矢量场,即欧式空间 E {\displaystyle E} 中的一个开集到 R {\displaystyle \scriptstyle \mathbb {R} } E {\displaystyle E} 的可微函数。因此向量分析是多元微积分的一个分支微分几何里的内容。

不过,向量分析的重要性源自它在物理学和工程科学中的广泛应用,所以上面的 E {\displaystyle E} 常限制为 R 3 {\displaystyle \scriptstyle \mathbb {R} ^{3}} ,即通常的三维空间。在这种语境下,矢量场给空间中的每个点赋予一个带有三个实数分量的矢量,而标量场给每个点赋予一个实数。以湖水为例,湖水各处的温度形成一标量场,而各处的速度则形成一矢量场。因此,矢量分析是流体力学、气象学、静电学、电动力学和地球物理学的基本工具。

相关

  • 班达海板块班达海板块是亚洲东南部位于班达海的小型板块,范围包括苏拉威西岛一部分、斯兰岛和班达群岛,东面边界有新畿内亚、鸟首板块、帝汶板块、巽他板块和马鲁古海碰撞带(英语:Molucca
  • 建隆建隆(960年-963年)是北宋太祖赵匡胤开始使用的年号。也是北宋的第一个年号。当时其他还残留的一些五代十国政权也用此年号纪年。宋朝于963年十一月正式向南唐颁历后,南唐后主李
  • 记者记者是媒体从业人员中,从事信息采集和新闻报导工作的人。英文通常称为“journalist”或“reporter”,但“reporter”特别是指电视台、电台等电子媒体的记者。或称访事员(流行于
  • 南投客运南投汽车客运股份有限公司(英语:NANTOU BUS TRANSPORTATION CO.,LTD.),简称南投客运或投客,是一家主要业务为台湾埔里周边地区公路客运的企业。主要行驶南投县市区公车与台中
  • 专注达专注达、专思达(英文名:Concerta)是一种哌甲酯缓释长效制剂,用于治疗注意缺陷多动障碍(ADHD, Attention Deficit Hyperactivity Disorder)。12岁以下的使用者,专思达的每日最大剂量
  • 三义三义乡(台湾客家语四县腔:samˊ ngi hiongˊ),旧名“三叉”,是台湾苗栗县的一个乡级行政区,位于苗栗县南端。境内木雕产业发达,因此有“台湾木雕王国”之雅号。除此之外,三义也是台
  • 美国领土扩张美利坚殖民地,又称美国海外属地或美国属地,是指美国除了联邦州与华盛顿特区以外的所有地,它们之间与美国的关系各有不同。阿拉斯加与夏威夷最终成为美国联邦的一州。而现在的美
  • 不应期 (性)不应期(英语:refractory period、日语:贤者タイム)时常被俗称为“圣人模式”、“贤者模式”,是人类性行为中的一个概念,指男性射精过后因阴茎感觉阈限(penile sensory threshold,PST
  • 南非君主南非联邦君主是1910年到1961年之间存在的非洲国家南非联邦的国家元首,与英联邦王国的成员国共同拥戴同一位君主(即英国君主)。因君主主要居住在英国,故委派一位南非联邦总督作为
  • 巴西航空工业E2系列巴西航空工业E2系列是一个由三种窄体中程双发动机喷气式客机组成的家族,由巴西航空航天制造商巴西航空工业公司开发,取代之前的巴西航空工业E系列。这三个机型有相同的机身横