偏微分方程

✍ dations ◷ 2025-12-09 01:24:37 #偏微分方程
偏微分方程(英语:partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函数及其偏导数之间的关系。符合这个关系的函数是方程的解。偏微分方程分为线性偏微分方程与非线性偏微分方程,常常有几个解而且涉及额外的边界条件。方程中常以u为未知数及偏微分,如下:用于空间偏微分的梯度运算子 ∇ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) {displaystyle nabla =({partial over partial _{x}},{partial over partial _{y}},{partial over partial _{z}})}时间偏微分 u ˙ = ∂ u ∂ t {displaystyle {dot {u}}={partial u over partial t}} ,线性偏微分方程的例子如下:适用于重力场问题的求解适用于所有物质或电荷的重力场或静电场。未知函数u(x,y,z,t):其中k代表该材料.一些线性二阶偏微分方程可以分为:抛物线方程,双曲线方程和椭圆方程。其他的像Euler–Tricomi方程在不同应用领域中也有不同的形式。这种分类便于在解偏微分方程时寻找初始条件提供依据。一阶偏微分方程是指和未知数的一阶导数有关的偏微分方程,表示式为:其中参数A,B是x,y的变量。表示式为:其中参数A,B,C是x,y的变量。如果在xy平面上有 A 2 + B 2 + C 2 > 0 {displaystyle A^{2}+B^{2}+C^{2}>0} ,该偏微分方程在该平面上为二阶偏微分方程。二阶偏微分方程类似以下的圆锥方程:该二阶偏微分方程可分类为:抛物线方程,双曲线方程和椭圆方程,其分类方式为:如果偏微分方程的系数不是一个常数,该偏微分方程可能不属于以上几种类别之一,而可能是混合形式方程。一个简单的例子为Euler–Tricomi方程:该方程称为椭圆双曲线方程。因为当x < 0时是椭圆形式,当x > 0时是双曲线形式。偏微分方程解中任意函数的出现必然产生解的各种差异,考虑到几乎不知道这些解的详情,在大多数问题中惯常的目标是找满足合适的和确定的条件(例如在空间的边界处和某固定时刻)的那些解,要求这些条件可以确定唯的解是自然的要求。而且还有更进一步的考虑,即这些条件的大小或量的微小改变在解本身也带来相应地小的改变。法国数学家阿达马强调后一方面,当解不连续地依赖于原始数据变化时称此问题是不适定的或提得不正确的对于双变量的Laplace方程:∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = 0 ( y > 0 ) {displaystyle {frac {partial ^{2}z}{partial x^{2}}}+{frac {partial ^{2}z}{partial y^{2}}}=0(y>0)}在边界条件z ( x , 0 ) = 0 {displaystyle z(x,0)=0} 和 ∂ z ( x , 0 ) ∂ y = 1 n cos ⁡ n x {displaystyle {frac {partial z(x,0)}{partial y}}={frac {1}{n}}cos nx}之下,符合条件的解为z ( x , y ) = 1 n 2 sinh ⁡ ( n y ) cos ⁡ ( n x ) {displaystyle z(x,y)={frac {1}{n^{2}}}sinh(ny)cos(nx)}当 n → + ∞ {displaystyle {begin{smallmatrix}nrightarrow +infty end{smallmatrix}}} 时 其数据在 y = 0 {displaystyle {begin{smallmatrix}y=0end{smallmatrix}}} 处 z {displaystyle {begin{smallmatrix}zend{smallmatrix}}} 和 ∂ z ∂ y {displaystyle {begin{smallmatrix}{frac {partial z}{partial y}}end{smallmatrix}}} 的指定值趋于0,而 z ( x , y ) {displaystyle {begin{smallmatrix}z(x,y)end{smallmatrix}}} 的值在无穷大的范围内震荡,所以这个解不适定。一些有效的解析法解偏微分方程方法:通过分离变量法减少偏微分方程中的变量,将一个偏微分方程分解成若干个常微分方程。沿着一阶偏微分方程的特征线,偏微分方程简化为一个常微分方程。沿着特征线求出对应常微分方程的解就可以得到偏微分方程的解。利用积分法,将偏微分方程变换为可分离的偏微分方程,方便求解。一般为傅里叶变换分析。通过适当的变量变换,可以简化偏微分方程的求解。一个典型的例子为Black–Scholes方程:可以简化为热力方程:通过如下变换:非齐次偏微分方程可通过寻找基本算子,然后通过带有初始条件的卷积来解答。 该法常用于信号处理中通过冲激响应来求解滤波器。因为一个线性齐次偏微分方程解的重叠也可看做一个解,所以可以通过交叉重叠这些解得到偏微分方程的一个解。在众多求解偏微分方程的数值方法中,三种应用最广的方法为有限元法(Finite Element Method, FEM)、有限体积法(Finite Volume Method, FVM)和有限差分法(Finite Difference Method, FDM)。其中,有限元法占主要地位,尤其是它的高效高阶版本—hp-FEM(英语:hp-FEM)。其它版本的有限元法还有:广义有限元法(Generalized Finite Element Method, FFEM)、扩展有限元法(eXtended Finite Element Method, XFEM)、无网格有限元法(Meshfree Finite Element Method)、离散迦辽金有限元法(Discontinuous Galerkin Finite Element Method, DGFEM)等。

相关

  • 白血球白血球,又称为白细胞,是血液中重要的血细胞之一。除白细胞外,人体血液中还含有红细胞、血小板和血浆。白细胞是免疫系统的一部分,帮助身体抵抗传染病以及外来的东西。白细胞可以
  • 慢性支气管炎支气管炎是肺部支气管(中至大的大小之呼吸道)的发炎。症状包括咳痰、喘鸣、呼吸急促及胸口不适。支气管炎有急性和慢性两种。急性支气管炎的咳嗽症状一般持续三周,逾九成是病毒
  • 人工心脏人工器官(英语:Artificial organs)是用人工材料制成,能部分或全部代替人体自然器官功能的部件。目前,除人工大脑外,几乎人体各个器官都在进行人工模拟研制中。不少人工制造的器官
  • 丝足虫类丝足虫门是一类原生动物,属于有孔虫界. 也有人主张丝足虫独立为一界.丝足虫的主要特征是通过丝状伪足摄食,没有真实的胞口。
  • 红藻门红藻门(学名:Rhodophyta),是含有藻红素的一门藻类,属于多细胞、真核细胞的生物;约有7000种。几乎所有的红藻都生活在海洋中,他们生长在涨潮线以下的岩石上或较深的水中,有些物种可以
  • 非正式经济灰色经济,又称黑市场、地下经济、影子经济,一般是指一种在国民经济中未向政府申报登记,而经济活动脱离政府法律法规约束,又不向政府纳税的经济成分。又可指逃避政府的管制、税收
  • 马其顿王国马其顿王国(古希腊语:Μακεδονία)是古希腊西北部的王国。其史上最辉煌的时期即为亚历山大大帝开创的亚历山大帝国(马其顿帝国)。亚历山大帝国是历史上继波斯帝国之后第二
  • The Australian《澳大利亚人报》(英语:The Australian)是澳大利亚销量最高的大报。日报流通量11万6千份,周末版流通量25万5千份。 该报2017年9月推出中文版。《澳大利亚人报》由新闻集团旗下的
  • 放射性元素放射性或辐射性是指某元素的放射性同位素从不稳定的原子核自发地放出射线(如α射线、β射线、γ射线等)而衰变形成另一种同位素(衰变产物),这种现象称为放射性。衰变时放出的能量
  • 分布分布可以是指: