偏微分方程

✍ dations ◷ 2024-07-03 05:06:31 #偏微分方程
偏微分方程(英语:partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函数及其偏导数之间的关系。符合这个关系的函数是方程的解。偏微分方程分为线性偏微分方程与非线性偏微分方程,常常有几个解而且涉及额外的边界条件。方程中常以u为未知数及偏微分,如下:用于空间偏微分的梯度运算子 ∇ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) {displaystyle nabla =({partial over partial _{x}},{partial over partial _{y}},{partial over partial _{z}})}时间偏微分 u ˙ = ∂ u ∂ t {displaystyle {dot {u}}={partial u over partial t}} ,线性偏微分方程的例子如下:适用于重力场问题的求解适用于所有物质或电荷的重力场或静电场。未知函数u(x,y,z,t):其中k代表该材料.一些线性二阶偏微分方程可以分为:抛物线方程,双曲线方程和椭圆方程。其他的像Euler–Tricomi方程在不同应用领域中也有不同的形式。这种分类便于在解偏微分方程时寻找初始条件提供依据。一阶偏微分方程是指和未知数的一阶导数有关的偏微分方程,表示式为:其中参数A,B是x,y的变量。表示式为:其中参数A,B,C是x,y的变量。如果在xy平面上有 A 2 + B 2 + C 2 > 0 {displaystyle A^{2}+B^{2}+C^{2}>0} ,该偏微分方程在该平面上为二阶偏微分方程。二阶偏微分方程类似以下的圆锥方程:该二阶偏微分方程可分类为:抛物线方程,双曲线方程和椭圆方程,其分类方式为:如果偏微分方程的系数不是一个常数,该偏微分方程可能不属于以上几种类别之一,而可能是混合形式方程。一个简单的例子为Euler–Tricomi方程:该方程称为椭圆双曲线方程。因为当x < 0时是椭圆形式,当x > 0时是双曲线形式。偏微分方程解中任意函数的出现必然产生解的各种差异,考虑到几乎不知道这些解的详情,在大多数问题中惯常的目标是找满足合适的和确定的条件(例如在空间的边界处和某固定时刻)的那些解,要求这些条件可以确定唯的解是自然的要求。而且还有更进一步的考虑,即这些条件的大小或量的微小改变在解本身也带来相应地小的改变。法国数学家阿达马强调后一方面,当解不连续地依赖于原始数据变化时称此问题是不适定的或提得不正确的对于双变量的Laplace方程:∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = 0 ( y > 0 ) {displaystyle {frac {partial ^{2}z}{partial x^{2}}}+{frac {partial ^{2}z}{partial y^{2}}}=0(y>0)}在边界条件z ( x , 0 ) = 0 {displaystyle z(x,0)=0} 和 ∂ z ( x , 0 ) ∂ y = 1 n cos ⁡ n x {displaystyle {frac {partial z(x,0)}{partial y}}={frac {1}{n}}cos nx}之下,符合条件的解为z ( x , y ) = 1 n 2 sinh ⁡ ( n y ) cos ⁡ ( n x ) {displaystyle z(x,y)={frac {1}{n^{2}}}sinh(ny)cos(nx)}当 n → + ∞ {displaystyle {begin{smallmatrix}nrightarrow +infty end{smallmatrix}}} 时 其数据在 y = 0 {displaystyle {begin{smallmatrix}y=0end{smallmatrix}}} 处 z {displaystyle {begin{smallmatrix}zend{smallmatrix}}} 和 ∂ z ∂ y {displaystyle {begin{smallmatrix}{frac {partial z}{partial y}}end{smallmatrix}}} 的指定值趋于0,而 z ( x , y ) {displaystyle {begin{smallmatrix}z(x,y)end{smallmatrix}}} 的值在无穷大的范围内震荡,所以这个解不适定。一些有效的解析法解偏微分方程方法:通过分离变量法减少偏微分方程中的变量,将一个偏微分方程分解成若干个常微分方程。沿着一阶偏微分方程的特征线,偏微分方程简化为一个常微分方程。沿着特征线求出对应常微分方程的解就可以得到偏微分方程的解。利用积分法,将偏微分方程变换为可分离的偏微分方程,方便求解。一般为傅里叶变换分析。通过适当的变量变换,可以简化偏微分方程的求解。一个典型的例子为Black–Scholes方程:可以简化为热力方程:通过如下变换:非齐次偏微分方程可通过寻找基本算子,然后通过带有初始条件的卷积来解答。 该法常用于信号处理中通过冲激响应来求解滤波器。因为一个线性齐次偏微分方程解的重叠也可看做一个解,所以可以通过交叉重叠这些解得到偏微分方程的一个解。在众多求解偏微分方程的数值方法中,三种应用最广的方法为有限元法(Finite Element Method, FEM)、有限体积法(Finite Volume Method, FVM)和有限差分法(Finite Difference Method, FDM)。其中,有限元法占主要地位,尤其是它的高效高阶版本—hp-FEM(英语:hp-FEM)。其它版本的有限元法还有:广义有限元法(Generalized Finite Element Method, FFEM)、扩展有限元法(eXtended Finite Element Method, XFEM)、无网格有限元法(Meshfree Finite Element Method)、离散迦辽金有限元法(Discontinuous Galerkin Finite Element Method, DGFEM)等。

相关

  • 抗生素抗细菌药(英语:antibacterial)也称为“抗细菌剂”,是一类用于抑制细菌生长或杀死细菌的药物。在不引起歧义的情况下,抗细菌药也可简称为“抗菌药”,包括抗生素(英语:antibiotic) 由微
  • 心脏病学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学心脏病学(英语:cardiology)亦称心脏学,为
  • 世界银行189个国家(国际复兴开发银行) 173个国家(国际开发协会)世界银行(英语:World Bank,缩写WB)是为发展中国家资本项目提供贷款的联合国系统国际金融机构。它是世界银行集团的组成机构之
  • 安理会联合国安全理事会决议由安理会十五个会员国投票产生。一个决议在其中九个以上(含九个)的会员国决议通过并且五个常任理事国全部没有使用否决权的情况下将视为通过。
  • ETtoday新闻云ETtoday新闻云为台湾社群新闻网站,由东森新媒体控股股份有限公司经营。该网站前身为2000年至2008年3月的《东森新闻报》。2008年4月,《东森新闻报》被转售予中华联合电讯集团(
  • 神经胶质瘤神经胶质瘤是一种中枢神经系统的肿瘤疾病,源自神经胶质细胞的病变。神经胶质瘤通常出现于脑部(称为脑神经胶质瘤),但也有可能出现于其他神经,如视觉神经。
  • Proceedings of the National Academy of Sciences《美国国家科学院院刊》(英语:Proceedings of the National Academy of Sciences of the United States of America,通常简称为 PNAS;PNAS USA)是美国国家科学院的官方学术周刊。
  • 时间逻辑在逻辑中,术语时间逻辑被用来描述为表现和推理关于时间限定的命题的规则和符号化的任何系统。它有时也被称为时态逻辑,这是 Arthur Prior 在1960年代介入的基于模态逻辑的特殊
  • 先导化合物先导化合物(lead compound)是一种具有药理学或生物学活性的化合物,可被用于开发新药,其化学结构可被进一步优化,以提高药力、选择性,改善药物动力学性质。通过高通量筛选(high-thro
  • 吞剑吞剑,是一项危险的特技表演,也是一种行为艺术。表演者会把剑插入口中,剑尖经过食道到达胃部位置。其实吞剑者是真的把剑吞下,在吞剑过后会将之从口中拿回,吞剑期间他们还得忍受强