偏微分方程

✍ dations ◷ 2025-05-17 06:09:29 #偏微分方程
偏微分方程(英语:partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函数及其偏导数之间的关系。符合这个关系的函数是方程的解。偏微分方程分为线性偏微分方程与非线性偏微分方程,常常有几个解而且涉及额外的边界条件。方程中常以u为未知数及偏微分,如下:用于空间偏微分的梯度运算子 ∇ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) {displaystyle nabla =({partial over partial _{x}},{partial over partial _{y}},{partial over partial _{z}})}时间偏微分 u ˙ = ∂ u ∂ t {displaystyle {dot {u}}={partial u over partial t}} ,线性偏微分方程的例子如下:适用于重力场问题的求解适用于所有物质或电荷的重力场或静电场。未知函数u(x,y,z,t):其中k代表该材料.一些线性二阶偏微分方程可以分为:抛物线方程,双曲线方程和椭圆方程。其他的像Euler–Tricomi方程在不同应用领域中也有不同的形式。这种分类便于在解偏微分方程时寻找初始条件提供依据。一阶偏微分方程是指和未知数的一阶导数有关的偏微分方程,表示式为:其中参数A,B是x,y的变量。表示式为:其中参数A,B,C是x,y的变量。如果在xy平面上有 A 2 + B 2 + C 2 > 0 {displaystyle A^{2}+B^{2}+C^{2}>0} ,该偏微分方程在该平面上为二阶偏微分方程。二阶偏微分方程类似以下的圆锥方程:该二阶偏微分方程可分类为:抛物线方程,双曲线方程和椭圆方程,其分类方式为:如果偏微分方程的系数不是一个常数,该偏微分方程可能不属于以上几种类别之一,而可能是混合形式方程。一个简单的例子为Euler–Tricomi方程:该方程称为椭圆双曲线方程。因为当x < 0时是椭圆形式,当x > 0时是双曲线形式。偏微分方程解中任意函数的出现必然产生解的各种差异,考虑到几乎不知道这些解的详情,在大多数问题中惯常的目标是找满足合适的和确定的条件(例如在空间的边界处和某固定时刻)的那些解,要求这些条件可以确定唯的解是自然的要求。而且还有更进一步的考虑,即这些条件的大小或量的微小改变在解本身也带来相应地小的改变。法国数学家阿达马强调后一方面,当解不连续地依赖于原始数据变化时称此问题是不适定的或提得不正确的对于双变量的Laplace方程:∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = 0 ( y > 0 ) {displaystyle {frac {partial ^{2}z}{partial x^{2}}}+{frac {partial ^{2}z}{partial y^{2}}}=0(y>0)}在边界条件z ( x , 0 ) = 0 {displaystyle z(x,0)=0} 和 ∂ z ( x , 0 ) ∂ y = 1 n cos ⁡ n x {displaystyle {frac {partial z(x,0)}{partial y}}={frac {1}{n}}cos nx}之下,符合条件的解为z ( x , y ) = 1 n 2 sinh ⁡ ( n y ) cos ⁡ ( n x ) {displaystyle z(x,y)={frac {1}{n^{2}}}sinh(ny)cos(nx)}当 n → + ∞ {displaystyle {begin{smallmatrix}nrightarrow +infty end{smallmatrix}}} 时 其数据在 y = 0 {displaystyle {begin{smallmatrix}y=0end{smallmatrix}}} 处 z {displaystyle {begin{smallmatrix}zend{smallmatrix}}} 和 ∂ z ∂ y {displaystyle {begin{smallmatrix}{frac {partial z}{partial y}}end{smallmatrix}}} 的指定值趋于0,而 z ( x , y ) {displaystyle {begin{smallmatrix}z(x,y)end{smallmatrix}}} 的值在无穷大的范围内震荡,所以这个解不适定。一些有效的解析法解偏微分方程方法:通过分离变量法减少偏微分方程中的变量,将一个偏微分方程分解成若干个常微分方程。沿着一阶偏微分方程的特征线,偏微分方程简化为一个常微分方程。沿着特征线求出对应常微分方程的解就可以得到偏微分方程的解。利用积分法,将偏微分方程变换为可分离的偏微分方程,方便求解。一般为傅里叶变换分析。通过适当的变量变换,可以简化偏微分方程的求解。一个典型的例子为Black–Scholes方程:可以简化为热力方程:通过如下变换:非齐次偏微分方程可通过寻找基本算子,然后通过带有初始条件的卷积来解答。 该法常用于信号处理中通过冲激响应来求解滤波器。因为一个线性齐次偏微分方程解的重叠也可看做一个解,所以可以通过交叉重叠这些解得到偏微分方程的一个解。在众多求解偏微分方程的数值方法中,三种应用最广的方法为有限元法(Finite Element Method, FEM)、有限体积法(Finite Volume Method, FVM)和有限差分法(Finite Difference Method, FDM)。其中,有限元法占主要地位,尤其是它的高效高阶版本—hp-FEM(英语:hp-FEM)。其它版本的有限元法还有:广义有限元法(Generalized Finite Element Method, FFEM)、扩展有限元法(eXtended Finite Element Method, XFEM)、无网格有限元法(Meshfree Finite Element Method)、离散迦辽金有限元法(Discontinuous Galerkin Finite Element Method, DGFEM)等。

相关

  • 天花天花疫苗用以预防天花。古代民众预防天花的方法。其具体方法是把天花病患者身上的痘痂制浆(脓),以小刀拭在受种者的皮肤之下,使之产生免疫力,以预防天花。另一个方法,就是让受种者
  • 尸体现象尸体现象(postmortem phenomena)在法医学上是指人死亡后尸体的各器官、组织、细胞的生命活动停止并受到内外环境各种因素的作用而发生的一系列特殊变化。按照死后的时间,可以把
  • 担子果在真菌当中,担子果(英语:basidiocarp、basidiome、basidioma,复数:basidiomata)是担子菌门的子实体,是一种多细胞构造,起源于孢子产生出来的子实层。担子果是伞菌纲的特征;柄锈菌纲与
  • 治疗指数治疗指数(therapeutic index,简称TI),也称为治疗比例(therapeutic ratio),是要治疗的物质产生治疗效果(英语:Therapeutic effect)需要的量相对于会产生毒性分量的比例。相关的词therap
  • 高洋高洋可以指下列人物:
  • 体脂肪率体脂肪率,又称体脂百分比、体脂率,是将脂肪含量用其占总体重的百分比的形式表示,一般用于动物,但近年开始有在人体的应用。对于动物来说,体脂百分比的计算法是把动物体重中的脂肪
  • 海水淡化海水淡化也称海水化淡、海水脱盐,是指将海水中的多余盐分和矿物质去除得到淡水的工序。海水淡化主要是为了提供饮用水和农业用水,有时食用盐也会作为副产品被生产出来。海水淡
  • 手工业手工业,是指通过手工劳动,并使用简单的工具进行工业性生产活动的产业。在近代的工业革命之前,大多数的工业生产都属于手工业。工业革命带来的生产机械化和工厂制度,使得传统手工
  • 医用大麻医用大麻(法语:Cannabis médical; 英语:medical cannabis或medical marijuana)是可用于医疗处方的大麻或大麻素。相比娱乐用大麻的高强度THC,医用大麻拥有相对较高的大麻二酚(CBD)
  • 核型核型(英语:Karyotype)是一种生物或细胞的染色体组成。用于核型分析。当细胞处于有丝分裂中期时,染色体排列在细胞赤道板,是观察它们的最好时机。对这些细胞染色,通过显微镜拍照获