首页 >
偏微分方程
✍ dations ◷ 2025-04-03 16:18:35 #偏微分方程
偏微分方程(英语:partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函数及其偏导数之间的关系。符合这个关系的函数是方程的解。偏微分方程分为线性偏微分方程与非线性偏微分方程,常常有几个解而且涉及额外的边界条件。方程中常以u为未知数及偏微分,如下:用于空间偏微分的梯度运算子
∇
=
(
∂
∂
x
,
∂
∂
y
,
∂
∂
z
)
{displaystyle nabla =({partial over partial _{x}},{partial over partial _{y}},{partial over partial _{z}})}时间偏微分
u
˙
=
∂
u
∂
t
{displaystyle {dot {u}}={partial u over partial t}}
,线性偏微分方程的例子如下:适用于重力场问题的求解适用于所有物质或电荷的重力场或静电场。未知函数u(x,y,z,t):其中k代表该材料.一些线性二阶偏微分方程可以分为:抛物线方程,双曲线方程和椭圆方程。其他的像Euler–Tricomi方程在不同应用领域中也有不同的形式。这种分类便于在解偏微分方程时寻找初始条件提供依据。一阶偏微分方程是指和未知数的一阶导数有关的偏微分方程,表示式为:其中参数A,B是x,y的变量。表示式为:其中参数A,B,C是x,y的变量。如果在xy平面上有
A
2
+
B
2
+
C
2
>
0
{displaystyle A^{2}+B^{2}+C^{2}>0}
,该偏微分方程在该平面上为二阶偏微分方程。二阶偏微分方程类似以下的圆锥方程:该二阶偏微分方程可分类为:抛物线方程,双曲线方程和椭圆方程,其分类方式为:如果偏微分方程的系数不是一个常数,该偏微分方程可能不属于以上几种类别之一,而可能是混合形式方程。一个简单的例子为Euler–Tricomi方程:该方程称为椭圆双曲线方程。因为当x < 0时是椭圆形式,当x > 0时是双曲线形式。偏微分方程解中任意函数的出现必然产生解的各种差异,考虑到几乎不知道这些解的详情,在大多数问题中惯常的目标是找满足合适的和确定的条件(例如在空间的边界处和某固定时刻)的那些解,要求这些条件可以确定唯的解是自然的要求。而且还有更进一步的考虑,即这些条件的大小或量的微小改变在解本身也带来相应地小的改变。法国数学家阿达马强调后一方面,当解不连续地依赖于原始数据变化时称此问题是不适定的或提得不正确的对于双变量的Laplace方程:∂
2
z
∂
x
2
+
∂
2
z
∂
y
2
=
0
(
y
>
0
)
{displaystyle {frac {partial ^{2}z}{partial x^{2}}}+{frac {partial ^{2}z}{partial y^{2}}}=0(y>0)}在边界条件z
(
x
,
0
)
=
0
{displaystyle z(x,0)=0}
和
∂
z
(
x
,
0
)
∂
y
=
1
n
cos
n
x
{displaystyle {frac {partial z(x,0)}{partial y}}={frac {1}{n}}cos nx}之下,符合条件的解为z
(
x
,
y
)
=
1
n
2
sinh
(
n
y
)
cos
(
n
x
)
{displaystyle z(x,y)={frac {1}{n^{2}}}sinh(ny)cos(nx)}当
n
→
+
∞
{displaystyle {begin{smallmatrix}nrightarrow +infty end{smallmatrix}}}
时
其数据在
y
=
0
{displaystyle {begin{smallmatrix}y=0end{smallmatrix}}}
处
z
{displaystyle {begin{smallmatrix}zend{smallmatrix}}}
和
∂
z
∂
y
{displaystyle {begin{smallmatrix}{frac {partial z}{partial y}}end{smallmatrix}}}
的指定值趋于0,而
z
(
x
,
y
)
{displaystyle {begin{smallmatrix}z(x,y)end{smallmatrix}}}
的值在无穷大的范围内震荡,所以这个解不适定。一些有效的解析法解偏微分方程方法:通过分离变量法减少偏微分方程中的变量,将一个偏微分方程分解成若干个常微分方程。沿着一阶偏微分方程的特征线,偏微分方程简化为一个常微分方程。沿着特征线求出对应常微分方程的解就可以得到偏微分方程的解。利用积分法,将偏微分方程变换为可分离的偏微分方程,方便求解。一般为傅里叶变换分析。通过适当的变量变换,可以简化偏微分方程的求解。一个典型的例子为Black–Scholes方程:可以简化为热力方程:通过如下变换:非齐次偏微分方程可通过寻找基本算子,然后通过带有初始条件的卷积来解答。
该法常用于信号处理中通过冲激响应来求解滤波器。因为一个线性齐次偏微分方程解的重叠也可看做一个解,所以可以通过交叉重叠这些解得到偏微分方程的一个解。在众多求解偏微分方程的数值方法中,三种应用最广的方法为有限元法(Finite Element Method, FEM)、有限体积法(Finite Volume Method, FVM)和有限差分法(Finite Difference Method, FDM)。其中,有限元法占主要地位,尤其是它的高效高阶版本—hp-FEM(英语:hp-FEM)。其它版本的有限元法还有:广义有限元法(Generalized Finite Element Method, FFEM)、扩展有限元法(eXtended Finite Element Method, XFEM)、无网格有限元法(Meshfree Finite Element Method)、离散迦辽金有限元法(Discontinuous Galerkin Finite Element Method, DGFEM)等。
相关
- 神经外科学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学神经外科,也常称作脑外科,是外科的一个
- 旅游医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学旅游医学,是一门关于预防和治理旅游相
- 生物数学数理生物学(英语:mathematical and theoretical biology),又称数学生物学(英语:mathematical biology)或生物数学(英语:biomathematics)是一个跨学科的领域,其主要目标是利用数学的技巧
- dsDNA脱氧核糖核酸病毒(英语:DNA virus),又称DNA病毒,其遗传物质为DNA。一般为正链DNA病毒。医学导航: 病毒病病毒(蛋白质)/分类cutn/syst (hppv/艾滋病, 流感/疱疹/人畜共患)/人名体
- 司法机构议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta
- 燃料核燃料(英语:nuclear fuel)是指可被核反应堆利用,通过核裂变或核聚变产生实用核能的材料。核燃料既能指燃料本身,也能代指由燃料材料、结构材料和中子减速剂及中子反射材料等组成
- 泊松比泊松式比(英语:Poisson's ratio),又译泊松比,是材料力学和弹性力学中的名词,定义为材料受拉伸或压缩力时,材料会发生变形,而其横向应变与纵向应变的比率,是一无量纲的物理量。当材料
- 约塞米蒂瀑布优胜美地瀑布(Yosemite falls),是北美洲落差最大的瀑布,位于美国加州内华达山脉,属于优胜美地国家公园,其最壮观的季节在春末,水量充沛,气势惊人。又译为约塞米蒂瀑布。 优胜美地瀑
- 斯提里科弗拉维斯·斯提里科(Flavius Stilicho,约359-408年)也译作斯蒂里格、斯底里哥,是拥有半蛮族的血统的高级将领,贵族和西罗马帝国执政官。斯提里科出生在日耳曼地区,是一位汪达尔父亲
- 应激性应激性(英语:irritability)是指在新陈代谢的基础上,生物体对外界刺激都能产生一定的反应。植物的根能够向地生长,是植物对重力的刺激的反应。如果把植物放到失重环境,则根不会出现